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Abstract

Airborne wind energy (AWE) uses a tethered airborne to harvest the wind energy. The highest
power densities are achieved if the airborne is a rigid or flexible wing and if it is flown in crosswind
motions like circles or figure eights. Energy is produced either in a pumping process with a
ground based generator or continuously with onboard turbines. Similar output powers compared
to classical wind energy are achievable already today. In order to build an AWE prototype for
future university research, a distributed programmable logic controller (PLC) is needed, because
controllers, sensors and actuators may be on ground and on the airborne. For this, the following
PLC approach is proposed: Only inexpensive ordinary computers and embedded computers like
the BeagleBone Black or the Raspberry Pi are used. All computers involved run a Linux with
the Preempt-RT real time patch. With that it is possible to start any application with real
time priority only with a special command, i.e. no special library is needed. Therefore the cross
platform and open source C++ Qt framework in combination with the Qt Creator integrated
development environment (IDE) is used. The nodes of the distributed PLC communicate via
standard Internet Protocol (IP) links, so that Qt as underlying framework alone is sufficient.
These communication links facilitate that it is arbitrary which and how many nodes run on any
computer. For the same reason, the whole PLC software can be developed and run software-in-
the-loop on a single computer. To ease the development and to encapsulate repeating tasks of
the distributed PLC, a library based on Qt was developed and is thus named “QtPLC”. Special
focus was laid on a clean and intuitive design of the QtPLC application programming interface
(API). The library also provides an extensible visualizer API: the QtPLC Control Center. The
presented PLC approach is compared to the actual requirements of a PLC for this application
and evaluated to fulfill all specifications. It is also compared to the solutions of other AWE
researchers and companies. The approach was tested successfully with an AWE model with
ground based generator which was exported from Matlab/Simulink to C++. It was executed on
a Raspberry Pi with a Preempt-RT patched Raspbian in hard real time. The QtPLC Control
Center with keyboard control was executed on a MacBook and communicated with the Raspberry
Pi via ethernet. Consequently, the presented PLC approach with the developed QtPLC library
seems to be suitable alternative of a PLC for a research prototype and for simulations.
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Nomenclature

Symbol Meaning
N := {0, 1, 2, 3, . . . }, set of natural numbers
N>0 := {1, 2, 3, . . . }, set of positive natural numbers
R := (−∞,∞), set of real numbers
R>0 := (0,∞), set of positive real numbers
R≥0 := [0,∞), set of positive real numbers including 0
In the following let n,m ∈ N>0.
x := (x1, x2, . . . , xn)> ∈ Rn (column) vector with xi ∈ R ∀i ∈ {1, 2, . . . , n},

all vectors are bold

|x| :=
√
x>x =: x, the Euclidean norm (or 2-norm) of x ∈ Rn

x ∈ R, scalar, all scalars are non-bold

X :=

x11 . . . x1m
...

. . .
...

xn1 . . . xnm

 ∈ Rn×m, matrix with coefficients xij ∀i ∈

{1, 2, . . . , n} ∀j ∈ {1, 2, . . . ,m}, all matrices are upper case and bold
x ∈ R, constant scalar, all constants are non-italic

dirx := x
|x| ∈ R3 ∩

(
[−1, 1], [−1, 1], [−1, 1]

)>
, the direction or unit vector of

x ∈ Rn

ẋ := dx
dt ∈ R, first time derivative of x ∈ R

ẍ := d2x
dt2 ∈ R, second time derivative of x ∈ R

x, y, z ∈ R3
[
(1, 1, 1)>

]
axis unit vectors of the x, y and z axis of a cartesian

coordinate system
α, β, γ ∈ R [◦] Euler angles for the rotations around the x, y and z axis of a

cartesian coordinate system, i.e. roll angle, pitch or elevation angle, yaw
or azimuth angle

xy ∈ R3, 3D vector with cartesian coordinates in the y fixed cartesian co-
ordinate system where y ∈ [b = body, e = earth, t = tether]
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List of symbols

Symbol Meaning
Latin symbols.
A ∈ R>0

[
m2
]
, projected wing area

ab = v̇b = r̈b ∈ R3
[
(m/s2,m/s2,m/s2)>

]
, acceleration of the wing or body

cae :=
√

(cd,i + cd,t)2 + c2l ∈ R≥0 [1], combined aerodynamic coefficient

cAWE :=
c3ae
c2d,i
∈ R≥0 [1], AWE coefficient

cd := cd,i + cd,t ∈ R [1], drag coefficient
c∗d ∈ R [1], drag coefficient at optimal angle of attack α∗

cd,i ∈ R>0 [1], intrinsic drag coefficient
cd,t ∈ R [1], turbine drag coefficient
cl ∈ R [1], (intrinsic) lift coefficient
c∗l ∈ R [1], lift coefficient at optimal angle of attack α∗

ct ∈ R>0 [N/m], spring constant of the tether
g = 9.81 m/s2, gravitational acceleration
F a ∈ R3

[
(N,N,N)>

]
, acceleration force vector

Fae := |F ae| ∈ R [N], magnitude of the total aerodynamic force
F ae ∈ R3

[
(N,N,N)>

]
, total aerodynamic force vector

F ae,d ∈ R3
[
(N,N,N)>

]
, drag force vector

Fae,d,i ∈ R [N], magnitude of the intrinsic drag force
F ae,l ∈ R3

[
(N,N,N)>

]
, lift force vector

F g ∈ R3
[
(N,N,N)>

]
, gravitational force vector

Ft := |F t| ∈ R [N], magnitude of the tether force
F t ∈ R3

[
(N,N,N)>

]
, tether force vector

Im,ref ∈ R [A], reference current for the main electrical machine
lt ∈ R≥0 [m], tether length
mb ∈ R>0 [kg], mass of the wing or body
P ∈ R [W], power
Pl ∈ R [W], power losses
P ref ∈ R [W], average reference power
Pw ∈ R [W], wind power
Pw,e ∈ R [W], extracted wind power
rb ∈ R3

[
(m,m,m)>

]
, position vector of the wing or body

rb,0 ∈ R3
[
(m,m,m)>

]
, initial position vector of the wing or body

Rxe(α) :=

1 0 0
0 cosα − sinα
0 sinα cosα

, rotation matrix to rotate a vector with the roll

angle α around the x axis of the earth fixed cartesian coordinate system,
i.e. the xe unit vector

8



Symbol Meaning

Rye
(β) :=

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

, rotation matrix to rotate a vector with the

pitch or elevation angle β around the y axis of the earth fixed cartesian
coordinate system, i.e. the ye unit vector

Rze(γ) :=

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

, rotation matrix to rotate a vector with the

yaw or azimuth angle γ around the z axis of the earth fixed cartesian
coordinate system, i.e. the ze unit vector

Rzeyexe
(γ, β, α) := Rze(γ)Rye

(β)Rxe
(α), assembled x-y-z Euler angles transformation

matrix
s ∈ Rn, n ∈ N, vector with shape parameters
t ∈ R [s], time
tj ∈ R [s], jitter time
tm ∈ R≥0 [s], message delay
ti ∈ R [s], maximum jitter for the ith slave node with i ∈ N>0

T b→e ∈ R3×3, transformation matrix to transform a force or velocity vector of
the body fixed cartesian coordinate system to the earth fixed cartesian
coordinate system

T e→b = T−1b→e ∈ R3×3, transformation matrix to transform a force or velocity
vector of the earth fixed cartesian coordinate system to the body fixed
cartesian coordinate system

T t→e ∈ R3×3, transformation matrix to transform a force or velocity vector of
the tether fixed cartesian coordinate system to the earth fixed cartesian
coordinate system

vb = ṙb ∈ R3
[
(m/s,m/s,m/s)>

]
, wing or body velocity

vb,0 ∈ R3
[
(m/s,m/s,m/s)>

]
, initial wing or body velocity

vb,r ∈ R3
[
(m/s,m/s,m/s)>

]
, radial portion of the wing or body velocity

vb,t ∈ R3
[
(m/s,m/s,m/s)>

]
, tangential portion of the wing or body velocity

vr := |vr| ∈ R [m/s], apparent or relative wind speed
vr ∈ R3

[
(m/s,m/s,m/s)>

]
, apparent or relative wind velocity

vt := |vt| ∈ R [m/s], tether speed
vt ∈ R3

[
(m/s,m/s,m/s)>

]
, tether velocity

vt,out ∈ R [m/s], tether reel out speed
vw := |vw|, wind speed
vw ∈ R3

[
(m/s,m/s,m/s)>

]
, wind velocity

xb,yb, zb ∈ R3
[
(1, 1, 1)>

]
, axis unit vectors of the x, y and z axis of the cartesian

coordinate system of the wing or body fixed reference frame
xe,ye, ze ∈ R3

[
(1, 1, 1)>

]
, axis unit vectors of the x, y and z axis of the cartesian

coordinate system of the earth fixed reference frame
xw,yw, zw ∈ R3

[
(1, 1, 1)>

]
, axis unit vectors of the x, y and z axis of the carte-

sian coordinate system of the wind fixed reference frame in which xw is
parallel to the wind velocity vector vw

Greek symbols.
α ∈ R [◦] angle of attack, roll angle
α∗ ∈ R [◦] optimal angle of attack
βc ∈ R [◦] pitch angle of the wing or body
βc,ref ∈ R [◦] reference pitch angle of the wing or body
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Symbol Meaning
βe = βw ∈ R [◦] elevation angle in the wind and the earth fixed coordinate system

(they are equal)
βe,ref ∈ R [◦] reference elevation angle in the earth fixed coordinate system
γc ∈ R [◦] yaw angle of the wing or body
γc,ref ∈ R [◦] reference yaw angle of the wing or body
γe ∈ R [◦] azimuth angle in the earth fixed coordinate system
γe,ref ∈ R [◦] reference azimuth angle in the earth fixed coordinate system
γw ∈ R [◦] azimuth angle in the wind fixed coordinate system
∆lt := lt − |rb| ∈ R [m] difference of the tether length and the norm of the

wing’s or body’s position vector
ε ∈ R [◦], angle between −vr and F ae

ζ ∈ R [1], power harvesting factor
λ := vr

vw
∈ R [1], wing speed ratio

λ∗ ∈ R [1], optimal wing speed ratio
ρ ∈ R>0

[
kg/m3

]
, air density

ϕ ∈ R3
[
(◦,◦ ,◦ )>

]
, orientation Euler angles

ϕm ∈ R [◦], angular position of the main electrical machine
ϕs,ref ∈ Rn [◦] , n ∈ N>0, vector of reference angular positions of the n steering

electrical machines
χ ∈ R3, velocity or force vector
ωm ∈ R [◦/s], angular speed of the main electrical machine
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List of abbreviations and terms

Abbreviation/term Meaning
API application programming interface
AWE airborne wind energy
CAN Controller Area Network, serial bus
Chap. Chapter
DLL dynamic linked library
DOF degree of freedom
Fig. Figure
GCC GNU Compiler Collection
GDB GNU Debugger, debugger software
GPIO general purpose input output
GUI graphical user interface
I2C or I2C Inter-Integrated Circuit, serial bus
IDE integrated development environment
IMU inertial measurement unit
IP Internet Protocol
KISS principle keep it simple and stupid, i.e simplicity is a key design goal and unnec-

essary complexity is avoided
Lst. Listing
OSI model Open Systems Interconnection model, network protocol layers model
p. page
PLC programmable logic controller
pp. pages
Preempt-RT real time patch for Linux
Qt cross platform C++ framework
Qt Creator IDE for Qt
QtPLC name of the developed PLC library based on Qt
RS232 point to point serial bus
RTAI Real Time Application Interface, real time patch for Linux
Sec. Section
SPI Serial Peripheral Interface, serial bus
SSH Secure Shell, software to access a computer remotely over a network via

a command line interface
TCP Transmission Control Protocol, part of the Internet Protocol family
UDP User Datagram Protocol, part of the Internet Protocol family
VNC Virtual Network Computing, software to access a computer remotely

over a network via a graphical user interface
WLAN Wireless Local Area Network
Xenomai real time patch for Linux

11



1 Motivation

Wind energy plants use the wings of a turbine to convert the energy of the wind into rotatory
mechanical energy which is then converted into electrical energy by a generator. In fact, the wing
tips harvest the majority of the wind energy [1, p. 5]. However, the material consuming parts, i.e.
the foundation, in particular for offshore plants, the steel and concrete tower, the nacelle, where
the heavy generator is placed in a height of up to 100 meters and above, are all necessary for
that technology. The increased masses and volumes of the parts of those classical wind energy
plants have not only a high footprint due to its production but also became a logistic challenge.

For about a decade, several research groups and small companies especially in Europe and the
United States investigate the field of airborne wind energy (AWE) [1, p. xi], also known as high
altitude wind energy. AWE uses a tethered airborne, i.e. a rigid or flexible wing, lighter than
air parts like a helium filled balloon, zeppelin or similar, to harvest the wind energy in higher
altitudes and with less material compared to classical wind energy. This thesis focuses on those
concepts which use a tethered wing that is flown mainly perpendicular to the wind direction
– i.e. crosswind – in circles or figure eights. Throughout this thesis, this is called crosswind
AWE. With that the highest power densities are achieved [1, pp. 3]. These concepts may include
one or more ground based or flying electrical machines, which can be operated in generator or
motor mode by power electronics. Depending on the concept, besides the ground based electrical
machine(s), only a tether and a wing, which can be a kite or a parachute, are needed. This was
already enough to achieve a power output of 2 MW [2] by a commercial product.

It is envisaged to build a crosswind AWE prototype for research at the university. The control
system, i.e. the programmable logic controller (PLC), is one key part of such a plant and must
be distributed because sensors and actuators may be on ground and on the airborne. Since the
fundings for university research prototypes are often limited, the costs for the PLC should be as
low as possible. So in this thesis a PLC is proposed that consists only of inexpensive ordinary and
embedded computers like the BeagleBone Black or the Raspberry Pi. All computers involved
run a Linux with the Preempt-RT real time patch. With this specific patch it is possible to
start any application with real time priority. Hence, it is possible to use the cross platform and
open source C++ Qt framework, which has application programming interfaces (APIs) for all
major tasks [3]. The nodes of the distributed PLC are proposed to communicate via standard
Internet Protocol (IP) links, so that Qt as underlying framework alone is sufficient. With these
communication links, it is arbitrary on which computer how many and which nodes run. For the
same reason, the whole PLC software can be developed and run software-in-the-loop on a single
computer. To ease the development and to encapsulate repeating tasks of the distributed PLC,
a library based on Qt was developed and named “QtPLC”.

In this thesis, first a theoretical background on crosswind AWE is given in Chap. 2. In Chap. 3,
the idea of the proposed PLC is presented in detail and compared to the actual requirements of
a PLC for a crosswind AWE prototype. This approach is also compared to solutions of AWE
researchers and companies. In Chap. 4, a model of a crosswind AWE plant with ground based
generator is derived and implemented in Matlab/Simulink. This model is then exported to C++
and used to implement QtPLC processes. Here, the QtPLC API is presented and background
information of important QtPLC implementations are given. The performance of this PLC
approach together with the QtPLC library is presented for two different test setups. Finally,
conclusions and an outlook are given in Chaps. 5 and 6.
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2 Theoretical background of crosswind
airborne wind energy

This chapter gives a theoretical background about the physics of AWE with strong focus on
crosswind AWE. The first book about AWE is “Airborne Wind Energy” by Uwe Ahrens, Moritz
Diehl and Roland Schmehl (Eds.) from Springer and was recently published in late 2013. This
book may be used as a wider introduction, but important facts will be found in this chapter:
First a general overview of crosswind AWE is given, how such a system is operated and how
electrical energy can be generated. This is followed by the derivation of the maximum power of
AWE. Finally, some issues about the automation of a crosswind AWE plant are considered.

2.1 Overview

2.1.1 Electrical energy generation with crosswind AWE

The crosswind AWE concepts use a tethered wing, i.e. a body which is shaped so that it creates
a high lift force. The magnitude of the lift force is proportional to the square of the air speed.
To gain a high lift force, the wing is flown in a crosswind motion like circles or figure eights, for
which the relative air speed is much higher than the wind speed alone and thus the lift force is
much higher.

There are two possibilities to generate electrical energy which may also be combined: The first
possibility is shown in Fig. 2.1. Here, the wing is tethered and the tether is attached to a winch
which is driven by an electrical machine. Energy is generated in a pumping process: In the first
phase the wing is flown in crosswind with a high lift force. The wing pulls the tether which is
reeled out slowly and thus energy is produced. In the second phase the wing is flown in a low
force position like the zenith or pitched down (no crosswind motion) and reeled back in, little
energy is consumed. This approach is called lift mode [4], or throughout this thesis lift AWE,
since the lift force of the wing is utilized directly.

In the second possibility the wing is tethered to the ground with constant tether length and
has embedded electrical machines with turbines. The turbines break the wing like the generator
breaks the wings of a classical wind energy plant. However, the turbines are exposed to the
much higher relative wind speed through crosswind flight instead of the wind speed alone. This
is called drag mode [4], or throughout this thesis drag AWE, since energy is generated by adding
an additional drag to the wing.

With drag AWE energy can be generated continuously, but the whole energy is to be transmit-
ted via the tether to the ground. With lift AWE the disadvantage of pumping energy production
is compensated by the fact that the main electrical machine is on the ground and actually no sen-
sor and no actuator is needed intrinsically on the wing. Thus, ordinary surf kites or parachutes
with ordinary tethers can be used.

SkySails states that their ship propulsion system already achieved a (mechanical) power (equiv-
alent) of 2 MW [2]. From this success it is assumed that at least the same magnitude of rated
power is achievable for electrical crosswind AWE plants. So the power output is already today
comparable to classical wind energy but, for lift AWE, by only using a generator on ground, a

13



reel in
phase

reel out
phase

wing

control pod

winch & main
electrical machine

swimming platform
(for of fshore)

tether

Figure 2.1: Example lift AWE plant visualizations from SkySails; system setup (left)1and pump-
ing energy production process with reel out and reel in phase (right)2.

tether and a wing – just enough to convert the wind energy in proper mechanical energy. Hence,
such a system may be installed on a buoy-like swimming platform, as SkySails intents to, see
Fig. 2.1 (left). By flying in higher altitudes where the winds are usually stronger the power
output can be increased, which is impossible for classical wind energy and is another advantage
of AWE.

2.1.2 Types of used wings

Possible wings for both crosswind AWE approaches are rigid airplanes, leading edge inflated
kites and ram air inflated kites or parachutes, as shown in Fig. 2.2. The cross section profiles
of all types are sketched below the photographs to emphasize that all these types – including
the flexible ones – are wings and can produce a high lift force. So this property is the same as
for modern classical wind energy plants using the lift principle instead of the drag principle. In
order to control the flight direction of the wing, its geometry can be changed, i.e. a rigid airplane
has controllable rudders and a kite or parachute has steering lines.

All types have their advantages and disadvantages. The differences are in the aerodynamic
and mechanical properties. Different research groups and companies use different types. In this
thesis the types are neither assessed nor was it necessary to chose a specific type in the simple
presented models. However, the following list outlines some properties of the three mentioned
types:

1Image source (edited): SkySails system rendering. SkySails GmbH, “Renderings SkySails Power”, http://
www.skysails.info/fileadmin/user upload/Presselounge/power/sks ps print 07 20x30cm 300dpi.jpg, accessed:
November 06, 2013.

2Image source (edited): SkySails phases rendering. SkySails GmbH, “Renderings SkySails Power”, http://
www.skysails.info/fileadmin/user upload/Presselounge/power/sks ps print 03 20x30cm 300dpi.jpg, accessed:
November 06, 2013.
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Figure 2.2: Types of wings for crosswind AWE: rigid airplane (left)3, leading edge inflated kite
(middle)4and ram air inflated kite (right)5each with a sketched cross section profile.

1. Rigid airplanes always keep their shape, so only a single tether is needed. Rudders are
used for steering, but need energy that is to be transmitted from the ground or generated
onboard. Compared to flexible wings, the stiff shape can be better aerodynamically opti-
mized. Rigid airplanes have the highest lift to drag ratios, which is a main factor of the
maximum theoretical power. Electrical machine(s) with turbines can be embedded into the
structure, which makes this type beneficial for drag AWE. However, there is no market for
rigid airplanes for this application, so the whole rigid airplane has to be developed from
scratch. Additionally, a single crash will lead to total loss of the airplane.

2. Leading edge inflated kites consist of a textile-like foil spanned on top from the leading edge
main tube and smaller strut tubes to the rear. The tubes are inflated by pressurized air
before the flight. Through the inflated tubes the kite mainly keeps its shape even after a
crash and can be restarted. Because the kite has no inlets, this is even possible on water
which is the reason why kite surfers use this type [5, p. 7]. In contrast to rigid airplanes,
leading edge inflated kites have a lower lift to drag ratio [1, p. 18]. They may have one or
two main tethers to transmit the high aerodynamic forces of the kite either to a control
pod or directly to the ground. Additionally, they have two steering tethers to change
slightly the shape with relatively low forces from the control pod or the ground. Electrical
machine(s) for drag AWE cannot be embedded into the kite, but into a control pod. Even
hard crashes on the ground are not likely to lead to serious damage to the kite.

3. Ram air inflated kites have air inlets at their leading edge and use the dynamic pressure
of the streaming air to inflate their profile to the shape of a wing during the flight. So
the disadvantage of ram air inflated kites over leading edge inflated kites is the need for
air speed to gain and hold the shape and therefore the difficulty to start. It is almost
impossible to restart a crashed ram air inflated kite especially on water when it gets filled

3Image source: Ampyx Power plane. Ampyx Power, http://www.ampyxpower.com/files/get/51, accessed:
November 06, 2013.

4Image source: TU Delft kite. TU Delft, http://www.tudelft.nl/fileadmin/UD/MenC/Support/Internet/TU
Website/TU Delft portal/Onderzoek/Environment/Climate City Campus/img/kite4.jpg, accessed: Mai 17,

2013.
5Image source: SkySails kite. SkySails GmbH, http://www.skysails.info/fileadmin/user upload/Presselounge/S

kySails Kite/11 Kite 300dpi rgb.jpg, accessed: Mai 17, 2013.
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with it. However, ram air inflated kites do not need to be inflated before the flight, are not
that threatened by (small) leaks and never need to be reinflated manually. [5, p. 7] Ram air
inflated kites have a slightly higher lift to drag ratio [1, pp. 289], but steering, drag AWE
possibility and crash damage are similar to leading edge inflated kites.

Combinations of the wing concepts that try to use the beneficial properties of several types
are possible as well. One example is a kite airplane, shown in Fig. 2.3.

Figure 2.3: Combination of kite and airplane – example photograph of a kite airplane [6, p. 21,
Fig. 2.1].

2.1.3 Dynamics of a tethered wing: the small earth

A wing looses one degree of freedom (DOF)

• if it is tethered,

• if the tether is always tense, which can be achieved by a controller, and

• if the tether is regarded to be ideal, i.e. massless, volume-less and infinitely stiff.

Hence, flights are only possible on the wind window quarter sphere or small earth quarter sphere
or short wind window or small earth, shown in Fig. 2.4. This is a dedicated area in the sky in
the shape of a quarter sphere opened to the wind velocity vector vw ∈ R3

[
(m/s,m/s,m/s)>

]
.

The sphere’s radius equals the length of the tether. Consequently, the position of the wing (and
also its velocity, acceleration and forces) can be described with respect to a spherical coordinate
system with the elevation angle βw ∈ R [◦] and the azimuth angle γw ∈ R [◦]. The index “w”
stands for “wind” because the coordinate system is aligned to vw. This consideration is also
valid for non constant tether lengths, i.e. for a variable small earth radius. To steer the wing
on a designed flight path on the small earth sphere, mainly its yaw orientation is controlled
through the wing’s rudders or steering lines. Through the loss of one DOF and the consideration
in the spherical coordinate system, the wing can be controlled like an ordinary airplane or car
(with approximately constant speed) that is controlled on a designed path in a two dimensional
cartesian coordinate system, i.e. βw and γw can be treated like the components of such a cartesian
coordinate system. The term “small earth” results from this similarity that the tethered wing is
flown on the small earth like an airplane on the real earth [7].
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Figure 2.4: Small earth/wind window in the wind cartesian coordinate system with the axis
unit vectors xw,yw, zw ∈ R3

[
(1, 1, 1)>

]
in which xw is parallel to the wind velocity

vector vw ∈ R3
[
(m/s,m/s,m/s)>

]
; the position of the wing can be described with

respect to a spherical coordinate system with the elevation angle βw ∈ R [◦] and the
azimuth angle γw ∈ R [◦] [5, p. 6][6, p. 18, Fig. 2.7].

2.1.4 Basic aerodynamics

The total aerodynamic force F ae ∈ R3
[
(N,N,N)>

]
acting on an arbitrary body can be split into

two portions, drag force F ae,d and lift force F ae,l, i.e.

F ae = F ae,d + F ae,l.

The portions are defined by the flow of air with the apparent or relative wind velocity vr ∈
R3
[
(m/s,m/s,m/s)>

]
, i.e. the actual air velocity the body is exposed to: F ae,d is parallel to vr

and F ae,l is perpendicular to vr, see Fig. 2.5 (left). The common formulation for these forces is

F ae,d =
1

2
ρ|vr|2Acd(α) dir(vr) (2.1)

F ae,l =
1

2
ρ|vr|2Acl(α)︸ ︷︷ ︸
magnitude

dir (vr × yb)︸ ︷︷ ︸
direction

, (2.2)

where ρ ∈ R>0

[
N/m2

]
is the air density, A ∈ R>0

[
m2
]

is the projected area of the wing,
α ∈ R [◦] is the angle of attack, cd(α) ∈ R>0 [1] is the drag coefficient and cl(α) ∈ R [1] is the
lift coefficient. The last term of each equation describes the direction where yb ∈ R3

[
(1, 1, 1)>

]
is the y coordinate axis unit vector of the body fixed cartesian coordinate system, see Fig. 2.5
(right), and

dir(n) :=
n

|n|

is the direction or unit vector of an arbitrary vector n ∈ Rm,m ∈ N. The angle of attack may
be expressed via the scalar product of vr and the z axis unit vector of the body fixed coordinate
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αvr
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Figure 2.5: Relative wind velocity vr ∈ R3
[
(m/s,m/s,m/s)>

]
with angle of attack α ∈ R [◦]

produces the total aerodynamic force F ae ∈ R3
[
(N,N,N)>

]
which can be split

into drag force F ae,d and lift force F ae,l with F ae,d ‖ vr and F ae,l ⊥ vr (left) and
wing or body fixed cartesian coordinate system with perpendicular axis unit vectors
xb,yb, zb ∈ R3

[
(1, 1, 1)>

]
where the wing spans over the xbyb plane (right).

system, zb,

v>r (−zb) = |vr| | − zb|︸ ︷︷ ︸
1

cos(90 ◦ − α)

⇔ v>r
|vr|

(−zb) = cos(90 ◦ − α)

⇔ arccos

(
v>r
|vr|

(−zb)

)
= 90 ◦ − α

⇔ α = 90 ◦ − arccos

(
v>r
|vr|

(−zb)

)
. [1, 8, 9]

2.2 Maximum power of AWE

Already in 1980 Miles Loyd derived the fundamental equations for both lift AWE and drag
AWE over speed and force ratios [4]. Over the years the equations were refined. A very elegant
derivation to calculate the maximum power of a tethered wing in general, is to use the maximum
power which it extracts from the wind and subtract the inevitable losses [1, pp. 12]. This
derivation is presented in the following.

2.2.1 Extracted power from the wind

First, the extracted power from the wind of a general (airborne) body is derived in this section.
For this, consider a volume of air in rest in which a tethered (airborne) body is moved with the

constant velocity vb ∈ R3
[
(m/s,m/s,m/s)

>
]
. Regardless of the body’s shape, this will lead to

a total aerodynamic force F ae acting on the body with a certain angle ε ∈ R [◦] to −vb. This
situation is shown in Fig. 2.6 (left) where a tethered airborne is pulled horizontally to the left.
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Figure 2.6: Thought experiment to derive the extracted power from the wind: A moving airborne
body with the velocity vb in a still standing volume of air (left) and a still standing
airborne body with a moving volume of air with the velocity vw = −vb (right). In
both cases a total aerodynamic force F ae with an angle ε acts on the body.

Considering that F ae compensates mass and that thus the airborne is in an equilibrium, the
power P ∈ R [W] needed to maintain vb is

P = vb Fae cos(ε).

Now, consider the situation in a coordinate system that stays at the airborne’s position. So
the volume of air streams by. This coordinate transformation is valid because both are inertial
coordinate systems. This is the same situation when the airborne is tethered on the ground and
the wind streams by with the constant wind velocity vw = −vb, as shown in Fig. 2.6 (right). So
the power that the body extracts from the wind, Pw,e ∈ R [W], is

Pw,e = vw Fae cos(ε).

The force that moves the air mass results in that case from pressure differences in the atmo-
sphere. [1, pp. 12]

“Lemma: Power extraction formula
Regard a constant wind speed vw. The total power [Pw,e] that a [body] extracts from this wind field
is given by the product of vw with the total aerodynamic force [Fae] that the [body] experiences
and the cosine of the angle [ε] between the direction of this force and the wind:

[Pw,e = vw Fae cos(ε)] .” [1, p. 12, Lemma 1.1] (2.3)

2.2.2 Power limit of airborne wind energy

The from the wind extracted power in Eq. (2.3) cannot be harnessed completely. To calculate
the maximum usable power P , the inevitable losses Pl are subtracted from the extracted wind
power Pw,e, i.e.

P = Pw,e − Pl

= vw Fae cos(ε)− Pl.

The upper limit for the extracted wind power is reached for ε = 0, i.e.

P ≤ vw Fae cos(0)− Pl

≤ vw Fae − Pl. (2.4)
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The magnitude of the total aerodynamic force of a body results from the geometric sum of the
magnitudes of the drag and lift forces from Eqs. (2.1) and (2.2),

Fae =
√
F 2
ae,d + F 2

ae,l

=

√(
1

2
ρv2r Acd

)2

+

(
1

2
ρv2r Acl

)2

=
1

2
ρv2r A

√
c2d + c2l ,

where the dependency of the aerodynamic coefficients from the angle of attack α is dropped
for simplicity. For drag AWE, a turbine is added to the body which is ideally aligned with the
relative wind velocity vr. Therefore, the drag coefficient cd may be split into an intrinsic portion
cd,i, which is induced by the body alone, and into a portion induced by a possible turbine cd,t,
which leads to

Fae =
1

2
ρv2r A

√
(cd,i + cd,t)2 + c2l︸ ︷︷ ︸

=:cae

=
1

2
ρv2r Acae. (2.5)

Inserting Eq. (2.5) into Eq. (2.4) gives

P ≤ vw
1

2
ρv2r Acae − Pl. (2.6)

For a wing, the lower boundary for the power loss Pl is the intrinsic drag loss, i.e.

Pl ≥ vr Fae,d,i

≥ vr
1

2
ρv2r Acd,i

≥ 1

2
ρv3r Acd,i.

This lower boundary is inserted into Eq. (2.6),

P ≤ vw
1

2
ρv2r Acae −

1

2
ρv3r Acd,i

≤ 1

2
ρv2r A (vw cae − vr cd,i) . (2.7)

By introducing the dimensionless wing speed ratio λ ∈ R [1],

λ :=
vr
vw
, (2.8)

and inserting vr = λvw into Eq. (2.7) gives

P ≤ 1

2
ρλ2v2wA (vw cae − λvw cd,i)

≤ 1

2
ρv3wAλ

2 (cae − λ cd,i) . (2.9)
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Obviously, the power becomes 0 if λ = 0 or if λ = cae
cd,i

, i.e. vr ranges from 0 to vr = cae
cd,i

vw, if the

wing is driven only by the wind vw. Consequently, vr is to be reduced to a certain value between
0 and vr = cae

cd,i
vw. For lift AWE this is achieved by releasing the tether, for drag AWE this is

achieved by adding turbine drag. The maximum power is found by maximizing this equation
over λ. For this, the right hand side of Eq. (2.9), is differentiated with respect to λ and set to
zero,

0 =
d

dλ

(
1

2
ρv3wAλ

2(cae − λ cd,i)
)

=
d

dλ
(λ2 cae − λ3 cd,i)

= 2λ cae − 3λ2 cd,i

= λ(2 cae − 3λ cd,i).

As evaluated above the first result λ = 0 leads to P = 0 and can be dropped. The second result
with λ 6= 0 is

0 = λ∗(2 cae − 3λ∗ cd,i) | · λ∗−1
= 2 cae − 3λ∗ cd,i

3λ∗ cd,i = 2 cae

λ∗ =
2

3

cae
cd,i

. (2.10)

Consequently, vr is to be reduced to 2
3 of the value it would have if it was driven from the wind

alone. The result of Eq. (2.10) inserted into Eq. (2.9) leads to the maximum power of

P ≤ 1

2
ρv3wAλ

∗2 (cae − λ∗ cd,i)

≤ 1

2
ρv3wA

(
2

3

cae
cd,i

)2(
cae −

2

3

cae
cd,i

cd,i

)
≤ 2

27
ρv3wA

c3ae
c2d,i

. [1, pp. 12]

“Theorem: Power limit of airborne wind energy
[...] Regard a wing with area A and aerodynamic [intrinsic drag and lift] coefficients [cd,i] and
[cl] that is moved in the wind of [...] wind speed vw and air density ρ. When the wing’s motion
[...] is not only influenced by its intrinsic lift and drag, but also by additional drag forces, such
as an on-board turbine with corresponding drag coefficient [cd,t] and by non-aerodynamic forces,
such as a tether, then the total usable power P that can be harvest from the wind using these
extra forces is limited by [

P ≤ 2

27
ρv3wA

c3ae
c2d,i

]
(2.11)

with [
cae =

√
(cd,i + cd,t)2 + c2l

]
. (2.12)
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This limit can be achieved if the total aerodynamic force is in line with the wind direction, if the
wing’s drag is the only loss and if the [relative wind speed] of the wing is made equal to[

vr =
2

3

cae
cd,i

vw

]
”. [1, p. 17, Theorem 1.1] (2.13)

2.2.3 Optimal tether reel out speed in pure lift AWE and optimal turbine
drag in pure drag AWE

For a uniform wind field, it can be shown, that the position where a tethered wing can achieve
the fundamental power limit, is in the pure down wind position [1, pp. 33], marked in Fig. 2.4
on p. 17. The situation of the velocities and forces of a massless wing in an acceleration less
state in this maximum power position is shown in Fig. 2.7. Of course, in reality the wind field is

vr

−vb,t
α

βc

vw − vb,r = vw − vt

F ae,l

F ae,d

F ae

F t

tangent
circle with tether
length radius

Figure 2.7: Velocities, forces, angle of attack α and pitch angle βc for a massless and unaccel-
erated wing which flies exactly perpendicular to the wind. Here, vr is the relative
wind velocity, vb,t is the tangential portion of the body velocity, vb,r is the radial
portion of the body velocity which is equal to the tether velocity vt, F ae is the total
aerodynamic force, F ae,d is the drag force and F ae,l is the lift force.

not uniform but sheered and the wind speed of that position is 0, so the real maximum power
position will be at a higher elevation angle. The highlighted triangles in Fig. 2.7 are similar [4]
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and thus the ratio

vr
vw − vt

=
Fae

Fae,d

=
1
2ρv

2
r Acae

1
2ρv

2
r Acd

=
cae
cd

(2.14)

can be established.
For pure lift AWE, i.e. cd = cd,i, Eq. (2.14) can be inserted into Eq. (2.10) which leads, with

the definition of λ in Eq. (2.8), to the optimal tether speed of

λ∗ =
2

3

cae
cd,i

vr
vw

=
2

3

vr
vw − vt

vw =
3

2
(vw − vt) =

3

2
vw −

3

2
vt

3

2
vt =

3

2
vw − vw =

1

2
vw

vt =
1

3
vw. (2.15)

For pure drag AWE, the tether length stays constant, i.e. vt = 0, and thus the ratio in Eq. (2.14)
becomes

cae
cd

=
vr
vw

(= λ)

which is equal to λ. With the portions of the drag coefficient, cd = cd,i + cd,t, and the optimal
λ∗ as in Eq. (2.10), the optimal turbine drag coefficient is given by

λ∗ =
2

3

cae
cd,i

cae
cd

=
2

3

cae
cd,i

1

cd,i + cd,t
=

2

3

1

cd,i

cd,i + cd,t =
3

2
cd,i

cd,t =
1

2
cd,i. (2.16)

2.2.4 Major losses

There are several losses that lower the actual power below that of Eq. (2.11). The major losses
to be mentioned are listed below:

• For lift AWE, only in the reel-out phase power is produced. In the reel-in phase, power is
consumed. This lowers the average cycle power below the derived limit.
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• The tether adds additional not negligible drag [1, pp. 12]. This drag may be modeled by a
raise of the body’s drag coefficient and thus lowers the maximum (intrinsic) power. This is
in particular critical for drag AWE, since the whole power has to be transmitted over the
tether.

• The body can stay in the maximum power position only for one point in time. If the body
is flown in circles around the maximum power position, than this position is never reached.
Additionally, since the steering results from a geometric deformation, usually steering drag
is added to the wing. So there are further losses because circles or figure eights need to be
flown. [1]

• The exact wind direction and wind speed and thus the exact maximum power position may
be unknown in the altitude of the wing. Additionally, the tether cannot be aligned exactly
with the wind vector because the tether exit point is on the ground.

• Further losses occur in the electrical machines, gears, etc. Power to steer the electrical
machines has to be provided.

2.2.5 The power harvesting factor (i.e. the Betz factor for AWE)

The imagined power of the wind Pw through an area that equals the projected wing area A is
given by

Pw =
1

2
ρv3wA.

The power harvesting factor ζ is defined as the ratio of the maximum AWE power of Eq. (2.11)
and that imagined wind power through the wing area A,

ζ :=
P

Pw
=

2
27ρv

3
wA

c3ae
c2d,i

1
2ρv

3
wA

=
4

27

c3ae
c2d,i

. (2.17)

This factor has the same meaning as the Betz factor for classical wind energy, since it is a
definition for the maximum reachable efficiency of a wing. [1, p. 18]

2.2.6 Experimentally achieved power harvesting factors and power densities

For rigid airplanes realistic values for the lift and drag coefficients at the optimal angle of attack α∗

are c∗l = 1.0 [1, p. 18] and c∗d = 0.07 [1, p. 18]. Inserted into Eq. (2.17), this results in a maximum

theoretical power harvesting factor of ζ̂ ≈ 30. At a moderate wind speed of vw = 10 m/s and
an air density of ρ = 1.2 kg/m3, this leads with Eq. (2.11) to a maximum reachable power of
P̂ /A ≈ 18.2 kW/m2.

The company Makani reported the best experimentally realized power harvesting factor of
ζ = 8 [1, p. 18] so far, which is ≈ 0.25ζ̂. The maximum reachable power at the mentioned wind
conditions with this power harvesting factor is P/A ≈ 4.8 kW/m2.

For kites usually the drag coefficient is worse and is realistically about c∗d = 0.2 [1, p. 18] which

leads to a maximum power harvesting factor of ζ̂ ≈ 4 [1, p. 18] and power density with the same
wind conditions of P/A ≈ 2.4 kW/m2.

Considering

• the size of the currently hugest SkySails kite of A = 320 m2 [10],
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• the mentioned lift and drag coefficients, c∗l = 1.0 and c∗d = 0.2, and

• a higher wind speed of vw = 15 m/s, which is realistic in higher altitudes,

the maximum power of that kite with Eq. (2.11) is P ≈ 2.5 MW. Considering losses the claimed
maximum power equivalent of 2 MW [2] by SkySails seems feasible.

2.3 Automation of a crosswind AWE plant

2.3.1 General requirements

Crosswind AWE only has a chance in the electrical power generation industry, if it is auto-
mated completely, i.e. a crosswind AWE plant must perform the following tasks reliably and
autonomously:

1. start the wing when the wind is strong enough,

2. produce power by flying circles or figure eights (and perform pumping cycles for lift AWE),
and

3. land the wing when the wind speed is too low or the weather becomes too extreme.

All this has to be done while holding certain variables like the tether force or the distance between
the wing and the ground within certain boundaries to guarantee a save operation.

2.3.2 Control Strategies

There are several different control strategies to fly the above mentioned maneuvers, see e.g. [5].
With the considerations of the small earth in Sec. 2.1.3 on pp. 16, maybe the most obvious
control strategy is to use a nested controller structure [5, 11], as shown in Fig. 2.8:

ϕs,ref
βc,ref

γc,ref

βe,ref

γe,ref –
–

–
–

Im,ref

βc

γc

βe

γe

ωm

ϕm

CAWE plant
incl. respective controllers for 
the steering electrical machinesorientation 

controller
course 

controller

power 
controller
course planner

and main electrical 
machine controllers

P ref

s

Figure 2.8: Control strategy with nested controllers.

1. The innermost controller is an orientation controller, i.e. it controls the wing’s yaw angle
γc ∈ R [◦], which is the angle of the wing around the tether. The index “c” stands for
control. Additionally, this controller may also control the wing’s pitch angle βc ∈ R [◦].
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The outputs in both cases are the reference positions for the steering electrical machines
ϕs,ref ∈ Rn

[
(◦,◦ , . . . )>

]
, n ∈ N>0.

2. The course controller brings the wing on the desired course, that is e.g. a circle path, a
figure eight path or the zenith position. The circle path may be defined by its center
position and the figure eight path may be defined by its position of intersection. Thus, it
would be sufficient if the controller receives a position in the two coordinates of the wind
window sphere, i.e. the elevation angle βw,ref and the azimuth angle γw,ref, and one or more
shape parameters, in Fig. 2.8 denoted as s. In order to lose the dependency of the wind
direction, the elevation and azimuth angles in the earth fixed reference frame, βe,ref and
γe,ref, may be chosen. The controller’s output, i.e. its control variable, is only the wings’s
yaw angle, γref, which is set so, that the wing heads towards the desired path or position.

3. Finally, the outermost controller is the power controller which has two tasks: Firstly, it
plans the course and thus the reel out and reel in phases for lift AWE, i.e. it outputs βe,ref
and γe,ref as well as s to the course controller. It may also set the pitch angle of the wing
βc,ref (powering/depowering). Secondly, it controls the main electrical machine with the
reference current Im,ref ∈ R [A] which is linked directly to its moment and thus to the
tether force. The main electrical machine’s angular speed ωm ∈ R [◦/s] is to be measured
in order to control it. To detect when the phases from reel in to reel out should be changed
in lift AWE, also the main electrical machine’s position angle ϕm ∈ R [◦] is to be measured
which is linked directly to the tether length. The reference value of this controller is e.g.
the average output power P ref.

So, with the introduction of the small earth coordinates, standard approaches from aviation can
be used [5, p. 28, p. 50]. The advantage from the small earth approach is, that the control
problem is divided into several easier control problems.

Another approach, that is investigated thoroughly, is to use a nonlinear model predictive
controller to control the entire system in all phases. [1]

The biggest automation challenges for both control engineering and mechanical engineering
are the start and landing phases. Many researchers and companies may have a prototype with
fully automated pumping cycle, but no automatic start or landing. SkySails performs the start
and landing phases with a telescoping boom. Others investigate a rotatory start and landing to
artificially generate enough relative wind speed on the ground. For drag AWE, in contrast to lift
AWE, start and landing seems to be easier, since the flying electrical machines with the turbines
can be used in motor mode and therefore the wing can start and land like a helicopter. [1]

2.3.3 Sensors and actuators

Fig. 2.8 shows the most important signals to be measured. To measure the position of the wing
angle sensors at least for the main tether or an inertial measurement unit (IMU) are necessary.
The most important sensors already come with the encoders and current sensors of the electrical
machines. With an IMU, depending on the product, also the velocity, orientation and orientation
velocity may be available. However, an IMU must be mounted in or at the wing, needs electricity
and the data needs to be transmitted to the ground. This results in the need to produce some
power onboard or to transmit some power over the tether to the wing. The latter would exclude
the use of standard tethers as used for kite surfing or paragliding. However, in future there could
be the need for some electricity on the wing for safety reasons anyway, e.g. to illuminate the wing
or to power collision avoidance electronics to protect civil aircrafts.

The most important actuators are the main and steering electrical machines. Additionally,
guides for the tethers and a mechanism that enables the wing to reach all azimuth angles γe ∈
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[0, 360 ◦) are crucial. Depending on the specific concept, there may be some more actuators like
breaks for the electrical machines or a mechanism that separates the wing from the tether.
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3 Proposed PLC approach for a lift
airborne wind energy research prototype

A key component of a lift AWE research prototype is the PLC of the automation system. In the
first section of this chapter, the terminology of “PLC” is classified. The proposed PLC approach
for the research prototype is presented in the second section. Regardless of that approach, the
general requirements of a PLC for this application are then specified and compared directly
with the proposed approach. The last section outlines the solutions of AWE research groups,
companies and available PLCs, to which the proposed approach is also compared to.

3.1 Scope

A commonly used picture for automation is the automation pyramid shown in Fig. 3.1. The

1

2

3

f ield level
sensors and actuators

process control level
programmable logic controller (PLC)

management level
e.g. graphical user interface (GUI) 1 s

10...100 ms

1 ms≤

Figure 3.1: Automation pyramid with rough control cycle period times for a lift AWE plant. [12,
pp. 202]

pyramid has three levels: The field level is the lowest level which contains the sensors and
actuators. In many cases they have specialized micro controllers for low level data processing and
control. One example for this is the power electronics controller of an electrical machine. Above
that level is the process control level with a PLC. A PLC consists of one or more computers
with digital, analog or bus interface possibilities e.g. by specialized interface cards to which
the sensors and actuators are connected. On these computers the higher level controllers are
executed, e.g. the three nested controllers from Fig. 2.8 on p. 25. Finally, the highest level is
the management level which may be implemented with a GUI or a high level communication
interface, e.g. Internet. Here, the states of the system are visualized and higher level control goals
are set and transmitted to the PLC, e.g. the reference average power of the lift AWE plant. [12,
pp. 202]

This thesis focuses on the upper two layers where with the management level a GUI is meant.
Throughout this thesis the term PLC is used for control system software and hardware with input
and output possibilities to interface sensors and actuators. For the software development, the
term also includes an IDE and at least an oscilloscope GUI to display system states and signal
trends for debugging purposes. Here, the term does not restrict the choice of programming
language to the classical PLC programming languages from IEC 61131.
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3.2 Outline of the proposed PLC approach

For the lift AWE prototype the in Fig. 3.2 visualized PLC approach is proposed. The whole
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Figure 3.2: Overview visualization of the proposed PLC approach.

approach is designed with the KISS principle (keep it simple and stupid, i.e simplicity is a key
design goal and unnecessary complexity is avoided) and focus is paid to low cost in general. A
detailed explanation is listed below:

Hardware
For high computationally intensive tasks ordinary computers are used. Small embedded
computers are used where the computational load is low, low level interfaces like CAN
bus6 are needed or the computer is needed in a remote place, e.g. inside the control pod.
As embedded computers inexpensive and preferably open source ones like the BeagleBone
Black or the Raspberry Pi, shown in Fig. 3.3, are selected. This holds the hardware costs
at a minimum.

Operating system
For each computer, a Preempt-RT patched real time Linux is used to gain hard real time.

6Controller Area Network, serial bus.
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Figure 3.3: Photographs of the BeagleBone Black (left)7and the Raspberry Pi (right)8.

With this patch, any application can be executed with real time priority only with a spe-
cial command. Thus, any programming language and framework can be used. All advan-
tages from a modern Linux operating system are available, e.g. graphical user interface (if
needed), remote access via SSH9 and VNC10, compiler tool chains including remote debug-
ging e.g. with GDB11 server, frameworks etc. The PLC software can be directly developed
on the target hardware or remotely. Since Linux runs on almost any computer/processor
the above mentioned embedded computers can be used. (Only micro controllers usually do
not run Linux due to their low computational power.)

Framework
The PLC software is developed in C++ using the open source and cross platform Qt
framework which has APIs for all major tasks and comes with the cross platform Qt
Creator IDE. To ease the PLC software development and to encapsulate repeating tasks,
in particular the communication of the distributed control system, a C++ PLC library
based on Qt is developed in this thesis and therefore named “QtPLC”. The application
specific control software may be developed directly with object oriented C++ or with
major control design and simulation software packages, e.g. Matlab/Simulink, via their
export functions to C/C++. Special focus was paid to an abstract, clean and intuitive
API of QtPLC, to make the development of the PLC software as simple as possible. Since
Qt is cross platform, the developed PLC software runs on almost any operating system
and thus almost any computer (even on smart phones).

Communication
The computers communicate with each other via IP links, i.e. with the standard User
Datagram Protocol (UDP) or Transmission Control Protocol (TCP) provided by Qt classes
via ethernet or Wireless Local Area Network (WLAN). WLAN is only used if necessary for

7Image source: https://www.logicsupply.com/blog/wp-content/uploads/2013/05/beaglebone-black-board-logic
supply pic1.jpg, accessed: December 03, 2013.

8Image source: http://cdn-reichelt.de/bilder/web/xxl ws/A300/RASPBERRY PI B 01.png, accessed: Decem-
ber 03, 2013.

9Secure Shell, software to access a computer remotely over a network via a command line interface.
10Virtual Network Computing, software to access a computer remotely over a network via a graphical user

interface.
11GNU Debugger, debugger software.
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speed and reliability reasons, e.g. for the communication from the ground station to the
wing.

The distributed control system is build up modular with different processes for controllers,
actuators, sensors, graphical user interfaces (GUI) etc. It is arbitrary on which computer
how many and which processes run, because an IP link between processes can also be
established on a single computer. This gives the advantage that the whole PLC software
can be developed and tested fully software-in-the-loop on a single, ordinary computer that
runs an operating system that is supported by Qt.

As a starting point, a very simplistic (KISS principle) communication scheme is used that
does not require time synchronization: Each process is seen as a black box with input
and output signals. A sensor may also have input signals e.g. for a sensor fusion process
and an electrical machine actuator should provide sensor signals e.g. for current, angular
speed and angular position. All signals are defined globally. The master collects all signal
values and any process can access any signal as input and define any signal as output. For
that, each process registers itself only to the master process and informs the master about
its desired input and output signals. Only the master runs a control cycle timer. The
input-process-output scheme is visualized in Fig. 3.2 in red-green-blue: On each timeout,
the master sends to all the slave processes a timeout command. The required input signals
from the last control cycle are attached to this command for the corresponding slave. The
processes then calculate output values and immediately send them back to the master.
So with this scheme, only two messages per control cycle are sent between each process
and the master. New processes can join the distributed PLC by connecting to the master.
However, the disadvantage is that for each signal link, e.g. from a sensor to a controller,
a communication dead time of the master control cycle period time is introduced, but is
negligible if the control cycle time is small enough. Additionally, for the slaves’ timeout an
offset of the needed time to send the timeout message from the master to the respective
slave is introduced, but is negligible as well, if the sending of messages is fast enough. For
that, the communication protocol was designed with minimum overhead.

User interaction
The QtPLC library provides the “QtPLC Control Center” graphical user interface API
for both to visualize data and states of the system and to interact with the PLC e.g. by
setting certain signal values. The API of the QtPLC Control Center is designed such that
it is easily extensible e.g. with a 3D visualization which is very beneficial for AWE. It acts
as an ordinary process for the PLC. Via an IP link over the Internet, the QtPLC Control
Center may also be run on a remote place.

It should be pointed out that the use of a Preempt-RT Linux leads to the advantage that no
specialized API for the real time ability is needed. The scheduler of Preempt-RT is designed
such that (almost) any process, i.e. (almost) any code no matter if it is executed in kernel or
user space, is preemptive [13]. Therefore, also any user space process can be set to the highest
priority, e.g. with the chrt command [14]. Hence, Qt alone as underlying framework can be used
for the PLC and all the mentioned advantages emerge. This is not possible with the other real
time Linux patches like RTAI 12 or Xenomai13.

Note that although it is recommended to use C/C++ on a Preempt-RT Linux [13] the PLC
software processes are not limited to be developed with the QtPLC C++ library because any
process can be started with real time priority in Preempt-RT. However, all parts of the commu-

12“RTAI – Real Time Application Interface for Linux”. https://www.rtai.org, accessed: November 18, 2013.
13“Xenomai: Real-Time Framework for Linux”. http://www.xenomai.org, accessed: November 18, 2013.
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nication scheme are implemented in QtPLC and would need to be reimplemented in the used
programming language or framework, respectively.

3.3 Requirements of a PLC for a lift AWE prototype

3.3.1 Development of the specifications and comparison to the proposed
approach

Regardless of the idea of the proposed approach, in the following list the requirements of a
PLC for a lift AWE research prototype are specified, weighted from “important” to “must” and
explained. Below each specification, the general fulfillment of the proposed approach is discussed
and visualized with a background in a traffic light color (red/yellow/green) or in gray if a further
discussion is needed.

A) Simplicity (must)
The PLC must be simple to program and to configure, i.e. an IDE with important devel-
opment features like auto completion and debugging is crucial. It must be able to import
models from major controller simulation tools, e.g. Matlab/Simulink. Additionally, the
PLC must be simple to operate, i.e. variables should be plotted in real time and interac-
tion during runtime through a user interface must be possible. This should also be possible
from a remote place e.g. over a network or Internet.

Fulfillment in the proposed approach: If Qt Creator as IDE, if the QtPLC library and
if its QtPLC Control Center as GUI are used, this requirement is fulfilled.

B) Real time ability (must)
A PLC must be real time capable.

Fulfillment in the proposed approach: Since the use of a Preempt-RT patched Linux
is proposed, the processes run with real time priority. However, with the use of Qt
alone only TCP/IP and UDP/IP sockets are provided for which indeed no real time
priority can be set, i.e. no real time ethernet can be used with Qt alone.

A deeper discussion on real time, how critical this point actually is and if this specifi-
cation is fulfilled, is given in the next section.

C) Software-in-the-loop ability (must)
For rapid development, it must be possible to develop and test the PLC software completely
with models, i.e. software-in-the-loop, before it is tested on a real system. Preferably, this
should be possible on an ordinary computer.

Fulfillment in the proposed approach: The whole PLC software can be developed fully
software-in-the-loop on a single ordinary computer that runs a Qt supported operating
system. So this requirement is fulfilled.

D) Interoperability (must)
PLC software parts may later be needed for other specialized simulation software. An
example from classical wind energy is the software Bladed in which the actual control
software can be integrated via a dynamic linked library (DLL) [15]. To allow the use of
the same code base as for the actual plant, the PLC software must be compilable to such
a DLL and to other targets.
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Fulfillment in the proposed approach: The PLC software is programmed with C++
and the Qt cross platform framework. So many different targets are possible and this
requirement is fulfilled.

E) Modularity and hardware-in-the-loop ability (must)
The PLC must be modular to form a distributed control system. With that, the PLC is
neither limited to one type of wing concept nor tether concept, i.e. parts of the PLC may be
placed on the ground and on the wing to control actuators, read sensors and process data.
Because all these sensors and actuators might be from different manufacturers and might
be exchanged during the development, it must be simple to add, exchange and remove
heterogenous parts. This modularity would also make it simple to replace actuators and
sensors (individually) by a model, i.e. hardware-in-the-loop.

Fulfillment in the proposed approach: Any type of computer can be used that runs with
Linux. The computers communicate via IP links over ethernet or WLAN. Through
the hardware interfaces of the embedded computers, sensors and actuators can be
connected or emulated by models on that computers. Consequently, this requirement
is fulfilled.

F) Inexpensive and open source hardware and software (must)
In particular for research prototypes for universities, the fundings for hardware is often
limited. So the PLC hardware and software licenses must be inexpensive. Preferably,
everything is open source to not only be unbound to a specific manufacturer but also
to have maximum freedom and deep insight in how the system works. Hence, the PLC
software developers would have the possibility to change and extend the PLC to the given
application requirements.

Fulfillment in the proposed approach: On the software side, this requirement is ful-
filled since only open source software is used. On the hardware side, the mentioned
BeagleBone Black and Raspberry Pi (Model B) are available for 45 $14and 35 $15and
are (partly) open source. So, this requirement is fulfilled.

G) Extensibility and interface ability (must)
In order to communicate with sensors and actuators, which is a crucial PLC feature,
the hardware components must have standard communication interfaces as CAN bus or
RS23216. It must also be possible to extend the system with other communication proto-
cols. Hence, the computers should have low level interfaces like SPI17 or I2C18. To allow
direct measurements of digital and analog voltages, digital and analog general purpose
input outputs (GPIOs) should be provided.

Fulfillment in the proposed approach: Only the high level controllers, e.g. the three
nested controllers from Fig. 2.8 on p. 25, run on the PLC, i.e. on the ordinary and the
mentioned embedded computers with a Preempt-RT Linux. The embedded computers
are used to communicate with the lower level controllers like the power electronics

14Price by Newark/element14: http://www.newark.com/circuitco/bb-bblk-000/dev-board-am3358-59-arm-mpu
-beaglebone/dp/65W6016, accessed: December 07, 2013.

15Price by Newark/element14: http://www.newark.com/raspberry-pi/raspbrry-modb-512m/model-b-assembled
-board-only/dp/43W5302, accessed: December 07, 2013.

16Point to point serial bus.
17Serial Peripheral Interface, serial bus.
18Inter-Integrated Circuit, serial bus.
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controllers. These controllers are assumed to be connected to the PLC via a standard
interface like CAN bus with which also measured data, e.g. current, angular speed and
angular position, is transmitted to the PLC. Both mentioned embedded computers
come with the low level interfaces RS232, SPI, I2C, GPIOs and the BeagleBone Black
also with CAN bus and analog GPIOs [16, 17]. With the GPIOs, sensors may also
be connected directly to the PLC. One promising possibility for further extensions
is to use the open source and inexpensive GNUBLIN19boards. However, in order to
operate these interfaces and additional boards, platform specific code and libraries
are necessary. Compared to industrial PLCs, homogenous input and output cards for
a great variety of interfaces are not available which limits the interface possibilities.
However, the mentioned restrictions and open questions seem to be manageable for
the research prototype and this requirement is seen as fulfilled.

H) Small and light hardware parts (important)
Since parts of the PLC may fly inside a control pod under the wing or attached to or inside
the wing, the hardware parts should be small and light. This would not only increase the
efficiency but would also lower the risk of damages due to crashes.

Fulfillment in the proposed approach: With the use of the mentioned credit card sized
embedded computers, this requirement is fulfilled.

I) Low overhead, fast execution (important)
In order to run complex controllers and in particular detailed AWE models in the case
of software- and hardware-in-the-loop, the applications must be executed fast and with
low overhead. A control frequency of minimum 100 Hz (i.e. control period time of 10 ms)
which is in the same magnitude as it is used for classical wind energy plants [18] should be
realizable. For that, the communication between the parts of the distributed PLC should
have a low overhead and must be fast as well.

Fulfillment in the proposed approach: The PLC software is proposed to be imple-
mented in C++, which is slightly slower then C but much simpler to write through
object orientation. So the overhead for the programming language is almost mini-
mal. However, the QtPLC library and the final applications must be implemented
well to hold that advantage. High computational intensive controllers and models are
proposed to run on ordinary computers which are available with high computational
powers. With the proposed communication protocol the signal values are exchanged
in binary format so that almost only the pure necessary bytes are sent between the
nodes (see next chapter). In the example applications described in the next chapter
a period time of 10 ms was achieved easily. So low overhead and fast execution are
fulfilled.

J) Small dead times (important)
A distributed PLC may suffer from high dead times through communication delays. For
any controller the highest dead times within the control loop limit the control performance.
Hence, dead times should be as low as possible.

Fulfillment in the proposed approach: With the chosen starting point of the commu-
nication scheme, a low dead time is only achieved if the control cycle period time is
low. Since a control cycle time of 10 ms is easily achievable, i.e. a low dead time per

19embedded projects GmbH: “GNUBLIN”. http://gnublin.embedded-projects.net/, accessed: November 24, 2013
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communication of 10 ms, and since this scheme is only the starting point and future
versions may implement other schemes, this requirement is seen to be fulfilled.

K) Reliability (important)
The system should be reliable and should have performance monitoring and checks, e.g.
watchdogs.

Fulfillment in the proposed approach: It will be tough to gain the same reliability of an
industrial PLC, at least in the medium run. The reason for this, is the usage of non-
real time ethernet and the from scratch developed QtPLC library, which is untested
on a real plant, yet. However, monitoring features like watchdogs are implemented in
QtPLC to gain a minimum of reliability.

In conclusion, the most important features are fulfilled or achievable with the proposed ap-
proach. The last point, reliability, is not yet a big issue, since it is mainly intended for prototyping.
However, if this approach wants to be used by companies or for a later spin-off without starting
to develop the PLC with an industrial solution from scratch, this issue is to be kept in mind.

The more important issue is the real time requirement which is discussed in detail in the next
section.

3.3.2 “Real time”

A qualitative definition of “real time” When dealing with PLCs “real time” means qualita-
tively that the computations hold time requirements that are to be specified. The term must not
be mixed with “real time clock”, i.e. a hardware clock a computer may have which runs on a few
kilohertz with a small battery to count the clock time in absence of power, so that the operating
system right after booting knows the correct system time. For a PLC, real time means

1. that the whole input-process-output sequence, illustrated in Fig. 3.2 on p. 29, must be
executed with the given control frequency within given jitter constraints, i.e. the control
frequency stays constant in given constraints, and

2. that the input-process-output has to be finished within the control period time, i.e. the
workload time plus eventual overhead time must be lower than the control period time.

A constant control cycle time is needed, because then continuos time controllers can be designed
and later converted to discrete ones with fixed cycle time [19, pp. 399]. Furthermore the PLC or
control algorithms must output the correct signal values on time otherwise the calculated results
become unusable.

Whether the input-process-output sequence is finished within the control period time, depends
on the used hardware, the software implementation, the system’s scheduling and the overall sys-
tem load. In contrast, meeting the jitter constraints depends mainly on the system’s scheduling
and the availability of precise timers.

Quantitative definitions of “real time” “Real time” is often divided into “soft real time”
and “hard real time”. However, the exact definition of these terms vary. [20, 21, 22] It is also
not simple to make a good distinction between a real time operating system and an ordinary
operating system. Steven Rostedt, a Red Hat developer of the Preempt-RT real time patch for
Linux, emphasizes this jokingly:

“[. . . ] all operating systems are real-time. That is, they all have some kind of
deadline, even Windows. If you hit a key and the computer doesn’t respond in say 5
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minutes, you are likely to throw the computer out the window. It failed to meet its
deadline. When your deadlines are big enough, pretty much any operating system
will do.”
—Steven Rostedt (Red Hat Preempt-RT developer) [23]

So it has to be defined how strong the real time requirements for the intended application are
and then a system that meets that requirements must be chosen.

In this thesis, the following quantitative real time terms are defined:

1. No real time: There are no time constraints and thus there is no dedicated mechanism at all
that forces to hold time constraints of the above described input-process-output sequence.

An example is a complex fluid dynamics simulation for which the computation of one
second takes a whole day. Obviously, there are no special requirements to the hard- and
software of the used computer.

2. Soft real time: The mean of the jitter is approximately zero, i.e. the control cycle frequency
is approximately constant.

An example is a simulation whose simulation time equals the actual physical time (regard-
less an offset) and thus “seems” to run in real time. Another example is the playing of a
video stream. Soft real time can be reached by any operating system, depending on the
system load.

3. Hard real time: The mean and absolute value of the jitter stay within given constraints for
the whole or for the majority of the time. This may be forced by a dedicated mechanism
e.g. with real time task priorities of “real time operating systems”. The exact maximum
absolute value and the exact mean value of the jitter have to be specified. Additionally, the
percentage of the time for which these constraints always have to be satisfied are specified
and may be monitored. The compliance of the specified constraints have to be measured
for a given system.

For control cycle frequencies in the magnitude of 100 Hz and above, hard real time is only
reached by real time operating systems, like the here proposed Preempt-RT patched Linux.

4. Provable real time: There is a highly deterministic mechanism, that forces the mean and
absolute value of the jitter into given constraints (which are usually lower then for hard real
time). Hard real time is already more deterministic than soft real time, but for provable
real time, the compliance of the jitter constraints are provable mathematically. It is also
possible to calculate a worst case execution time of the system. I.e. neglecting hardware
and software faults, the input-process-output sequence is always executed with the control
frequency plus/minus the small mathematically/statistically calculated jitter and is always
finished within the mathematically calculated worst case execution time.

Provable real time is usually only reached with micro controllers with very simple scheduling
e.g. through interrupts. This type of real time is only needed where a real time violation is
likely to lead to a not functioning system, high damage or human deaths. An example is
the airbag controller of a car or the power electronics controller of the electrical machines.

It has to be pointed out, that these cases are defined for this thesis. In particular the terms
“soft” and “hard” are sometimes defined slightly different or no distinction is made about the
provability, see e.g. [20, 21, 22, 24].
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Real time in the proposed approach and applied to a crosswind AWE prototype “No real
time” is not an option and “provable real time” for the higher level controllers, like the power
or flight controllers, that shall run on the PLC, is not needed. “Soft real time” is fine for
simulations (software-in-the-loop) on ordinary computers with ordinary operating systems. The
decision is clearly “hard real time” with the use of a real time operating system because much
more reliability is gained in particular for control period times in the magnitude of 10 ms and
below.

In [20] the Preempt-RT patch was tested and compared with other real time Linux variants
on a Beagle Board with the result that even under heavy load the magnitude of the jitter

• is always below 158µs [20, p. 11, tab. 6],

• in 95 % of the time even below 47µs [20, p. 11, tab. 6]

• with a median of −1µs [20, p. 11, tab. 6].

The highest possible frequency for which the jitter never exceeds 50 % of the control cycle period
time was approximated to 3.16 kHz [20, p. 11, tab. 7] and for which the jitter does not exceed
that limit for 95 % of the time to 10.64 kHz [20, p. 11, tab. 7]. So with these results, Preempt-RT
is suitable for specifications B) and I).

It has to be mentioned, that in [20] also an unpatched Linux kernel was tested, where the
CONFIG PREEMPT Linux kernel build flag was set and the real time process was run as chrt
user. The result again under heavy load was a jitter below 69µs for 95 % [20, p. 11, tab. 6] of
the time. However, for the complete measurement time of only two hours the maximum jitter
magnitude was more than 1 ms [20, p. 11, tab. 6] and is likely to be even higher for longer testing
times due to kernel or other low level routines [20]. Thus, using this solution for the application
of a crosswind AWE PLC may not be excluded but should only be used, if the control cycle
period time is way above 10 ms.

There are also investigations to determine the real time behavior of standard IP communi-
cations: In [25] among others the timing of sending UDP packets between two single board
computers running an ordinary Linux was measured. The average transmission time including
jitter for a 256 Byte message was reported to be ≈ 35 . . . 50µs [25, Fig. 4]. The transmission
time increases linearly with the size of the message (with an offset due to overhead) so that for
a message of 1024 Byte an average delay time of ≈ 75µs [25, Fig. 1] is denoted. Surprisingly,
the real time operating system VxWorks performed much worse. Only the RTnet [26] real time
ethernet extensions for RTAI and Xenomai and a pure data link layer communication, i.e. the
layer right above the physical layer in the Open Systems Interconnection (OSI) model, performed
slightly better.

Truly, the communication delay is not guarantied because ordinary IP sockets instead of real
time ethernet is used. To make it more likely that packets are sent without high delay from sender
to receiver, the computers of the actual PLC should not run unnecessary processes which use the
network like automatic updaters. Additionally, the network topology can further minimize delays
induced by congestions and similar, e.g. by connecting all computers in a subnet by an ethernet
switch [27]. Besides that, the packets are sent by the high prioritized real time processes. With
the high reachable transmission rates of ethernet of up to 1 GBit/s and above, the delay that is
caused by the lack of prioritization should be limited by the time needed to send the remaining
packets that are already buffered on the network card. This delay time is already included in
the above cited results.

In conclusion,

• regarding the proposed Preempt-RT with a maximum jitter of tj = 158µs [20, p. 11, tab. 6],
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• regarding the communication scheme where the master informs the slaves about a timeout
via a message,

• regarding that each timeout message with the attached input signals does not exceed a
size of 256 Byte, which equals 64 pure floating point values, and thus the message delay is
always below tm = 50µs [25, Fig. 4],

• regarding that 10 slave processes are registered to the master and that all timeout messages
are sent consecutively (for UDP this can be optimized through a broadcast message), and

• assuming that the above presented measured values hold for the specifically proposed sys-
tem,

then the maximum jitter per timeout the 10th slave would have is

t10 = tj + 10 tm

= 158µs + 10 · 50µs

= 658µs. (3.1)

This value is far below 10 % of a control cycle period time of 10 ms and is thus evaluated as
suitable. It is further evaluated that the determinism, which would be gained from a real time
ethernet like RTnet in conjunction with RTAI or Xenomai, is not worth to be implemented.
This would exclude the use of Preempt-RT and several mentioned advantages would be lost.
However, if this determinism is needed in a future application, it should be not that hard to add
it in QtPLC by using other libraries in addition to Qt.

With the starting point of the communication scheme, TCP instead of UDP is used. In the
next version of QtPLC the possibility to use UDP will be implemented to gain a lower overhead.
The magnitude of the overall jitter in Eq. (3.1) is below 1 ms. In conclusion, although the UDP
communication needs to implemented and the absolute jitter has to measured in the final system,
the real time requirement for the proposed PLC approach is seen as fulfilled.

3.4 PLCs used by AWE researchers and companies

In this section the PLC solutions of research groups and companies of the AWE community are
outlined. The section raises no claim to completeness, but the solutions of important researchers
and companies, including SkySails and the TU Delft, are discussed. These two solutions are
also compared to the proposed approach of this thesis. In general, the PLC solutions are quite
different and particularly self-developed which emphasizes that there is no ideal solution.

3.4.1 SkySails

The company SkySails, located in Hamburg, Germany, presents theirs approach in [1, pp. 599].
SkySails offers commercially a kite system for supporting ship propulsion with automatic start
and landing. The kite is steered via a control pod under the kite. The pod is powered over a
conducting connection of a non-standard tether. With its sensors, actuators and an emergency
battery, the pod can steer the kite autonomously in the case of an incident. Otherwise, pod and
ship communicate with each other over the tether or via a wireless link. Further sensors and
actuators are on the ship. [1, pp. 599]

Many parts of the distributed control system are self-designed to meet the requirements. Inside
the pod is a servo controller and an embedded flight computer each on a self-designed board.
They communicate via CAN bus. On the ship is the main computer with a (not further specified)
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real time Linux which communicates to the flight controller and to an industrial PLC. The latter
controls the hydraulic winches and the telescope boom for start and landing and is chosen
because an industrial PLC meets “the functional safety requirements of ISO 13849” [1, p. 605].
Via ethernet/TCP, the industrial PLC, the main computer and the GUI on the ship’s bridge or
optionally other GUI computers can interact with each other. It is stated, that the GUI on the
ship’s bridge was very important for visualization and control. SkySails chose a control frequency
of 10 Hz [1, p. 600]. For each cycle approximately 420 [1, p. 600] sensor, auxiliary and debug
values are recorded and stored for 10 days [1, p. 600] on the main computer. For the system
design, special focus was paid to reliability, because it is an industrial product. [1, pp. 599]

The timing of the computers in the control pod are synchronized with a CAN message. They
encapsulated the C++ classes so, that these parts of the software can be developed and tested
on an ordinary computer. For the ethernet/TCP connection, a self designed code generation tool
is used that takes an XML definition file for the different exchanged signals. [1, pp. 599]

Many design considerations are similar to the proposed approach of this thesis: A distributed
control system with heterogenous hardware is used where ordinary computers run high compu-
tational intensive tasks and embedded computers are located in remote places or to interface
with sensors and actuators. Interestingly, even the simple time synchronization scheme with a
timeout message is partly congruent. QtPLC includes the QtPLC Control Center GUI with an
extensible API. The communication between the nodes of the distributed control system seems to
be less complex with QtPLC: Instead of using a code generation tool, the exchangeable signals
are defined in an INI file that is read from the processes shortly after the start (see next chap-
ter). Additionally, not only parts of the code but the complete PLC software can be developed
software-in-the-loop with the QtPLC library.

3.4.2 TU Delft

The TU Delft, namely the team of Dr.-Ing. Roland Schmehl, investigates airborne wind energy for
more then ten years. They are specialized in a wide field of lift AWE including the investigation
of different wing types, modeling, aerodynamic optimization, control, etc. They currently have
a 20 kW [1, p. 404] kite power demonstrator with kites of up to 50 m2 [1, p. 404] area. They use
a battery powered control pod and one (ordinary) tether to the ground station. Several sensors
are involved including an IMU attached to the kite. The control pod, IMU and ground station
communicate via wireless links. [5, pp. 5]

Recently, the control system of the TU Delft was redesigned. Many design considerations
are presented in [11]: The distributed control system is modular. The main computer is a
desktop computer running a standard Linux, configured for embedded applications. It is stated,
that this is a powerful solution because new controllers could be developed easily. Additionally,
more complex algorithms like nonlinear model predictive control could be executed on such a
powerful computer. Two more different computers are on the ground and two on the airborne.
Several communication protocols like ethernet, CAN bus and WLAN are used. The control cycle
frequency is 20 Hz [11]. The nodes’ clocks are synchronized to a precision of at least 1 ms using
a network time protocol server. Several applications including control processes, GUI processes,
a data logger process or a clock daemon were implemented. [11]

For the less time critical software components a high level software framework based on Ze-
roMQ was developed. ZeroMQ provides a socket abstraction with different communication
schemes. It supports several programming languages. For the slower wireless links, UDP is
chosen. For the data serialization, Google protocol buffers is used with which messages can be
defined in a specialized file. This file is then fed to the Google protocol buffers code generator
which can output all major programming languages. For the winch control computer, a Xenomai
real time Linux and the software framework OROCOS are chosen. [11]
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Before that redesign, an XBee wireless link was used for the communication between ground
and control pod [11]. With that [5, p. 61] reported several crashes due to connection losses with
which the kite flow uncontrolled. In the new design a WLAN 802.11n link with a WLAN-n router
is used in the following manner: For the control pod two antennas and for the ground station
a directed antenna is used and the 5.5 GHz frequency band is chosen. With that interferences
are avoided and maximum reliability is gained. With this fast wireless link it is even uncritical
if packets have to be sent two or three times due to losses. During a test flight, including start,
landing and power production with tether lengths of up to 1000 m, not a single packet loss was
recorded. For the about 150 byte packets a mean round trip time of 4.7 ms was measured. [11]

There are again several similarities between proposed approach of this thesis and the TU Delft’s
solution, namely the use of heterogenous hardware, the use of several software applications and
the use of ethernet as main communication channel. A beneficial approach is to use ZeroMQ and
Google protocol buffers to gain independency of the programming language. Not all sources of the
developed frameworks and applications are published, yet. But Uwe Fechner told at the Airborne
Wind Energy Conference 2013 that he intents to publish everything under an open source license
sometime in 2014. It would be an interesting task then to compare QtPLC with the TU Delft’s
software and carry out optimizations.

OROCOS (Open Robot Control Software), that is only used for the winch control computer of
the TU Delft, is a cross-platform and open source C++ framework intended for machine and
robot control. It has an operating system abstraction for the creation of threads with a thread-save
communication. It is ported to the major operating systems including the real time Linux patches
RTAI/LXRT and Xenomai. With the CORBA Library it is also possible to form a distributed
control system over ethernet. [28] So OROCOS could be a suitable alternative on the software
side of the proposed PLC, i.e. to the QtPLC library. A comparison of both software solutions is
out of scope of this thesis but should be performed in a future work.

3.4.3 Other AWE researchers and companies

The research group of the KU Leuven, Belgium, under Prof. Dr. Moritz Diehl, are specialized
in nonlinear model predictive control in lift AWE. They built a small prototype with a model
airplane for rotatory start and landing. Besides micro controllers for the low level control, a
Xenomai Linux on a high end desktop computer is used to run the complex nonlinear model
predictive controllers. As underlying framework OROCOS is used. [1, pp. 465]

KITEnergy from Italy uses LabVIEW and the PXI real time platform of National Instruments.
The communication with the sensors and actuators are established via Profibus, RS232 and other.
Via ethernet a PC running a GUI is connected. As control cycle time 100 ms is chosen. [1, pp. 379]

EnerKite, a startup based in Berlin, built a 60 kW [1, pp. 427] demonstrator on a truck. They
use a ram air inflated kite with three tethers to three winches on the ground. [1, pp. 427] From
a dialogue with the EnerKite engineers on the Airborne Wind Energy Conference 2013, the
information was fetched that they once used an embedded development board for the control.
However, they quite early switched to an industrial PLC from Bachmann, which is also used in
classical wind energy.

3.4.4 Other solutions

There is a range of industrial PLC offers from companies like Beckhoff, Bachmann, Siemens or
dSpace which should meet many of the above specified requirements for a lift AWE prototype.
However, such a solution was excluded because the costs of such a PLC are too high for the
usually very limited fundings for university research prototypes.
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There are also a couple of open source projects that deal with PLCs. Most of them utilize
a micro controller to build a general purpose PLC device. Examples are “Brick Open Source
PLC”20,21, “open-plc”22 or “ClassicLadder”23. A micro controller, however, has not enough
computational power to run complex controllers and in particular complex models for lift AWE.
There are also a couple of open source supervisory control and data acquisition (SCADA) tools
and libraries like “OpenAPC”24 or “pvbrowser”25. SCADAs are basically GUIs instead of PLCs
and are thus only on the management level in the automation pyramid. There are a few other
open source PLC projects, but non of them seems to be promising for a lift AWE prototype.

Several open source and inexpensive boards for embedded development are available, namely
the “Arduino”26 utilizing a micro controller or the above mentioned BeagleBone Black and
Raspberry Pi. Very interesting for interfacing with sensors and actuators are also the above
mentioned GNUBLIN boards.

The actual goal of the proposed PLC approach with the QtPLC library is to use such open source
embedded boards (which can run a Linux) for a distributed PLC. But also ordinary computers, be
it a portable laptop or a high end desktop computer, are utilizable while making the development as
simple as possible. Instead of using one of the PLC programming languages from IEC 61131 like
structured text or even ladder diagram, the use of the object oriented C++ language and higher
level tools like Matlab/Simulink is forced. Other programming languages may also be used in the
future. Additionally, the QtPLC Control Center GUI application may be utilized as SCADA.

20Smith, W.: “Small Brick Open Source PLC”. http://startingelectronics.com/projects/small-open-source-PLC,
accessed: November 26, 2013.

21Smith, W.: “Large Brick Open Source PLC”. http://startingelectronics.com/projects/large-open-source-PLC,
accessed: November 26, 2013.

22“open-plc”. http://code.google.com/p/open-plc/wiki/Main?tm=6, accessed: November 26, 2013.
23Le Douarain, Marc: “ClassicLadder”. https://sites.google.com/site/classicladder, accessed: November 26,

2013.
24“OpenAPC – Open Advanced Process Control”. http://www.openapc.com, accessed: November 26, 2013.
25Lehrig, S.: “pvbrowser”. http://pvbrowser.de, accessed: November 26, 2013.
26“Arduino”. http://arduino.cc, accessed: 26.11.2013.
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4 Introduction to the QtPLC API using the
example of a lift airborne wind energy
plant model

In this chapter, first a lift AWE plant is modeled mathematically, implemented in Mat-
lab/Simulink and exported to C++. Instead of explaining abstractly the QtPLC API alone,
the most important parts and concepts are explained in detail by implementing the example lift
AWE model with the QtPLC library and the Qt Creator IDE. This may also be seen as a QtPLC
tutorial. Exemplary results of the execution performance of the QtPLC processes are presented
for two test system setups. The chapter closes with the interpretation of some simulation results
of the lift AWE plant.

4.1 Lift AWE plant modeling in Simulink and export to C++

The simplified diagram in Fig. 4.1 visualizes the modeling approach of the dynamic lift AWE
plant and shows the most important quantities. This model considers

• the wing’s dynamics as a mass point with mass mb ∈ R>0 [kg],

• the wing’s aerodynamics with lift and drag coefficients for different angles of attack, cd(α)
and cl(α), and

• the tether as a massless, volume less and lossless spring with spring constant ct ∈
R>0 [N/m].

F t

mb

ct

lt

ϕF g

F ae(cd(α), cl(α),vr)

vr
α

3d: roll, pitch, yaw angles

Figure 4.1: Modeling approach of the lift AWE plant with important quantities and properties.
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The complete orientation of the wing in three Euler angles ϕ ∈ R
[
(◦,◦ ,◦ )>

]
and the tether

length lt ∈ R>0 [m] can be set directly to desired values.
In this section the mathematical model is derived in detail and implemented in Mat-

lab/Simulink. Several source codes are presented. However, not every single line is explained in
detail. It is assumed that the reader has good knowledge in Matlab/Simulink.

4.1.1 Dynamics model

A mass point has only 3 DOF. The orientation has no dynamics and is not covered by that model
and can be chosen freely. Newton’s second axiom states

mbab =

n∑
i=1

F i, n ∈ N,

with the acceleration ab ∈ R3
[
(m/s2,m/s2,m/s2)>

]
. The acceleration and the forces are actually

time variant, but “(t)” with t ∈ R [s] is dropped for simplicity. The forces acting on the mass
point are the aerodynamic force F ae, the tether force F t and the gravitational force F g, i.e.

mbab = F ae + F t + F g.

Newton’s second axiom is only valid in inertial, i.e. unaccelerated, reference frames. Here, the
earth itself is used as inertial reference frame in cartesian coordinates, denoted by a superscript e.
Although the earth rotates around its own axis and moves around the sun and the sun moves
in the galaxy and so on, this is a suitable assumption since the accelerations these effects are
comparably low. The wing’s acceleration is the derivative of the wing’s velocity vb and the
velocity is the derivative of the wing’s position rb ∈ R3

[
(m,m,m)>

]
, i.e. ab = v̇b = r̈b.

The gravitational force in the earth fixed cartesian coordinate system has only a z component
which is the mass multiplied by the gravitational acceleration g ≈ 9.81 m/s2. Consequently, the
differential equation

mbr̈
e
b = F e

ae + F e
t +

 0
0

−mbg

 , reb(0) = reb,0, ṙeb(0) = veb(0) = veb,0 (4.1)

with initial position reb,0 ∈ R3
[
(m,m,m)>

]
and initial velocity veb,0 ∈ R3

[
(m/s,m/s,m/s)>

]
fully

describes the mass point’s motion in the earth fixed cartesian coordinate system. Equations for
the two missing forces, F e

ae and F e
t , are derived in the next two sections.

The gravitational force is calculated in an extra block in the Simulink implementation. Fig. 4.2
shows a screenshot of the “gravitation” subsystem and Fig. 4.3 shows a screenshot of the “mass
point dynamics” subsystem.

Figure 4.2: Screenshot of the “gravitation” subsystem in Simulink.

4.1.2 Aerodynamics model

The in Sec. 2.1.4 on pp. 17 introduced basic aerodynamics equations are used directly as aero-
dynamics model. As reference frame the wing or body fixed cartesian coordinate system is
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Figure 4.3: Screenshot of the “mass point dynamics” subsystem in Simulink.

used, shown in Fig. 2.5 (right) on p. 18. Quantities in this coordinate system are denoted by a
superscript b, i.e.

F b
ae,d =

1

2
ρ|vbr |2Acd(α) dirvbr

F b
ae,l =

1

2
ρ|vbr |2Acl(α) dir

(
vbr × yb

b

)
F b

ae = F b
ae,l + F b

ae,d

α = 90 ◦ − arccos

(
vbr
|vbr |

− zbb
)
.

Here, cd(α) = cd,i(α) since a pure lift AWE plant is modeled. As lift and drag coefficients with
dependency of α the graphs from [9, p. 7] are used as reference for a cubic spline interpolation
with the marked anchor points in Fig. 4.4. The spline’s polynomial coefficients were calculated
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Figure 4.4: Drag and lift coefficients in dependency of the angle of attack, cd(α) and cl(α).

using the Matlab function spline () with the code snippets from Lst. 4.1.

1 dragCoefficient_anchorAnglesOfAttack = [-180 -90 0 90 180];
2 dragCoefficient_anchorValues = [0.5 1.0 0.1 1.0 0.5];
3
4 dragCoefficient_splineCoefficients = spline(dragCoefficient_anchorAnglesOfAttack, [0

↪→ dragCoefficient_anchorValues 0]);
5
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6 liftCoefficient_anchorAnglesOfAttack = [-180 -140 -60 0 25 140 180];
7 liftCoefficient_anchorValues = [0 0.6 -0.1 0.2 1.0 -0.6 0];
8
9 liftCoefficient_splineCoefficients = spline(liftCoefficient_anchorAnglesOfAttack, [0

↪→ liftCoefficient_anchorValues 0]);

Listing 4.1: Code snippet to calculate the spline’s polynomial coefficients in Matlab.

All vectors of the mass point dynamics in Eq. (4.1) have to be given in the earth fixed cartesian
coordinate system. It would be possible to calculate the aerodynamic force directly in earth fixed
coordinate system by calculating the axis vectors ye

b and zeb. However, it is more common to
transform the relative wind velocity ver = vew− veb into the body fixed coordinate system vbr and

to transform the calculated total aerodynamic force F b
ae back into the earth fixed coordinate

system F e
ae.

The body fixed coordinate system is rotated and translated dynamically against the earth fixed
coordinate system. Since here only velocity and force vectors are to be transformed between the
two coordinate systems (i.e. no position vector is transformed), the translation is dropped. A
possibility to describe mathematically an arbitrary orientation in the three dimensional space is
by consecutive rotations around the x, y and z axis of a cartesian coordinate system with the
angles α (roll), β (pitch or elevation) and γ (yaw or azimuth). This is the x-y-z Euler angle
rotation sequence whose steps are listed in detail below:

1. The rotation matrix

Rxe
(α) :=

1 0 0
0 cosα − sinα
0 sinα cosα


with the roll angle α is applied to rotate a vector around the x axis of the earth fixed
coordinate system, i.e. around the basis vector xe.

2. The rotation matrix

Rye
(β) :=

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


with the pitch or elevation angle β is applied to rotate a vector around the y axis of the
earth fixed coordinate system, i.e. around the basis vector ye.

3. The rotation matrix

Rze
(γ) :=

cos γ − sin γ 0
sin γ cos γ 0

0 0 1


with the yaw or azimuth angle γ is applied to rotate a vector around the z axis of the earth
fixed coordinate system, i.e. around the basis vector ze. [29, pp. 10]

Altogether that forms the assembled transformation matrix

Rzeyexe
(γ, β, α) := Rze(γ)Rye

(β)Rxe
(α)

=

cos(β) cos(γ) cos(γ) sin(α) sin(β)− cos(α) sin(γ) sin(α) sin(γ) + cos(α) cos(γ) sin(β)
cos(β) sin(γ) cos(α) cos(γ) + sin(α) sin(β) sin(γ) cos(α) sin(β) sin(γ)− cos(γ) sin(α)
− sin(β) cos(β) sin(α) cos(α) cos(β)

 .
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Note that matrix multiplications are performed from the right side so that the sequence of the last
equation has the correct order. The three angles may be composed to the vector ϕ = (α, β, γ)>.
Throughout this thesis

• all cartesian coordinate systems are right handed with east-north-up axes,

• these three angle symbols, α, β and γ, are always used for the rotations around the respec-
tive x, y or z axis, with the right hand rule27 and

• only the presented x-y-z Euler rotation sequence with the axes of the earth fixed coordinate
system as reference is used.

Although the orientation of the wing can be described with only one sequence of the three
rotations, two rotation sequences are applied:

1. The first rotation is the control orientation where a pitch angle βc and a yaw angle γc can
be applied freely to the wing. The pitch angle is used to power/depower the wing and the
yaw angle is used to steer the wing into the desired direction on the small earth sphere.
Throughout this example lift AWE model, a roll angle different from zero is not considered.

2. Consider a pitch angle of βc = 0. When the tethered wing flies over the small earth sphere,
it changes its orientation automatically such that a person standing at the tether escape
point would always see the bottom of the wing. This behavior is neither covered by the
3 DOF mass point dynamics nor by the aerodynamic forces. So it is artificially added in
this second orientation transformation which depends on the wing’s elevation and azimuth
angle. These angles are calculated via the transformation of the wing’s position from the
earth fixed cartesian coordinate system to the earth fixed spherical coordinate system whose
origins are equal, shown in Fig. 4.5: If the position vector of the wing in the earth fixed

east

north

west

south

up

xe

ye

ze

βe

γe

0 ◦

90 ◦

180 ◦

270 ◦

0 ◦

90 ◦

180 ◦

270 ◦

re
b

Figure 4.5: Earth fixed spherical coordinate system.

27In literature, e.g. in [1], often the cartesian coordinate system is right handed and east-north-up axes are used
for the earth fixed reference frame, but east-south-down axes are used for the body fixed reference frame.
Additionally, often the symbols φ (roll), θ (pitch) and Ψ (yaw) are used for the angles. The in this thesis
used axes orientations and angle symbols are chosen differently because they seemed to be more consistent
and easier to remember.
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coordinate system is composed of reb = (reb,x, r
e
b,y, r

e
b,z)
>, then the elevation and azimuth

angles are determined by

βe = − arctan

 reb,z√
reb,x

2 + reb,y
2


γe = arctan

(
reb,y
reb,x

)
.

So, for this position dependent orientation, firstly the wing is rotated around ye with the
elevation angle βe +90 ◦. The offset of +90 ◦ accounts for the basic orientation of the wing,
shown Fig. 2.5 (right) on p. 18: Consider a control orientation of βc = 0 and γc = 0 and
an elevation angle of βe = −45 ◦ (all rotations are right handed), i.e. the wing flies towards
the zenith and is on its half way exactly between zenith and maximum power position.
Without an offset of +90 ◦ the person at the tether escape point would see the front of
the wing instead of its bottom. Secondly, the wing is rotated around the ze axis with the
azimuth angle γe, otherwise the person at the tether escape point would not see the bottom
of the wing for arbitrary γe.

All together the wing’s orientation is determined by the transformation matrix

T b→e := Rzeyexe
(γe, βe + 90 ◦, 0)Rzeyexe

(γc, βc, 0)

= Rze(γe)Rye
(βe + 90 ◦)Rxe

(0)Rze(γc)Rye
(βc)Rxe

(0)

= Rze(γe)Rye
(βe + 90 ◦)Rze(γc)Rye

(βc). (4.2)

In order to transform a velocity or a force vector of the earth fixed coordinate system, for the
moment represented by χe ∈ R3, into the body fixed coordinate system, χb, the transformation

χb = T e→b χ
e = T−1b→e χ

e

has to applied with

T e→b = T−1b→e = R−1zeyexe
(γc, βc, 0)R−1zeyexe

(γe, βe + 90 ◦, 0)

= Rxe(0)Rze(−γc)Rye
(−βc)Rxe(0)Rye

(−βe − 90 ◦)Rze(−γe)
= Rye

(−βc)Rze(−γc)Rye
(−βe − 90 ◦)Rze(−γe). (4.3)

Note, as written in Eq. (4.3), the inverse transformation matrix T−1b→e with the inverse rotations
has to be applied to transform χe to χb because the wing or body was rotated by the ordinary
(not-inverse) transformation matrix T b→e to its orientation. This can be visualized by rotating
the wing only by an angle γe around ze. From the view of the wing or body fixed coordinate
system, the x axis of the earth fixed coordinate system xe is then rotated by −γe around the ze
axis. So if χe = xe

e, then χb would be determined by χb = Rze(−γe)χe in that example.
In conclusion, the aerodynamic force in the earth fixed coordinate system is given by

F e
ae = T b→e F

b
ae

= T b→e

(
F b

ae,d + F b
ae,l

)
= T b→e

(
1

2
ρ|vbr |2Acd(α) dirvbr +

1

2
ρ|vbr |2Acl(α) dir

(
vbr × yb

b

))
(4.4)
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Figure 4.6: Screenshot of the “aerodynamics” subsystem in Simulink.
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with

α = 90 ◦ − arccos

(
vbr
|vbr |

− zbb
)

(4.5)

and

vbr = T e→b v
e
r

= T e→b (vew − veb) . (4.6)

A screenshot of the “aerodynamics” subsystem in Simulink is shown in Fig. 4.6. The aerody-
namic force is calculated in the body fixed coordinate system. For this, the relative wind velocity
ver = vew − veb in the earth fixed coordinate system is transformed by the Matlab block function
“earth -> body” whose code is shown in Lst. 4.2.

1 function body = earthToBody(earth, bodyControlOrientation, bodyPositionOrientation)
2
3 body = earth;
4 orientations = [bodyPositionOrientation, bodyControlOrientation];
5
6 for i = 1 : size(orientations, 2)
7 % get angles
8 alpha = orientations(1, i);
9 beta = orientations(2, i);

10 gamma = orientations(3, i);
11
12 % rotation matrices
13 R_x = [1, 0, 0;
14 0, cos(alpha / 360 * (2 * pi)), -sin(alpha / 360 * (2 * pi));
15 0, sin(alpha / 360 * (2 * pi)), cos(alpha / 360 * (2 * pi))];
16 R_y = [cos(beta / 360 * (2 * pi)), 0, sin(beta / 360 * (2 * pi));
17 0, 1, 0;
18 -sin(beta / 360 * (2 * pi)), 0, cos(beta / 360 * (2 * pi))];
19 R_z = [cos(gamma / 360 * (2 * pi)), -sin(gamma / 360 * (2 * pi)), 0;
20 sin(gamma / 360 * (2 * pi)), cos(gamma / 360 * (2 * pi)), 0;
21 0, 0, 1];
22
23 body = R_xˆ-1 * R_yˆ-1 * R_zˆ-1 * body;
24 end

Listing 4.2: Source code of the Matlab block function “earth -> body”.

The whole calculation of the aerodynamic force was also implemented inside a Matlab block
function because it was faster to develop and to debug. The source code is shown in Lst. 4.3.

1 function [angleOfAttack, dragCoefficient, liftCoefficient, aweCoefficient, drag, lift]
↪→ = aerodynamics(relativeWindVelocity)

2 %% alpha
3 angleOfAttack = 90 - acos(relativeWindVelocity’ / norm(relativeWindVelocity) *

↪→ -[0;0;-1]) / (2 * pi) * 360;
4 if angleOfAttack < -180
5 angleOfAttack = angleOfAttack + 360;
6 elseif angleOfAttack > 180
7 angleOfAttack = angleOfAttack - 360;
8 end
9

10
11 %% drag coefficient
12 dragCefficient_anchorPoints = [-180 -90 0 90 180];
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13 dragCoefficient_splineCoefficients = [-1.78326474622771e-06 0.000222222222222222 0
↪→ 0.500000000000000;2.05761316872428e-06 -0.000259259259259259
↪→ -0.00333333333333333 1;-2.05761316872428e-06 0.000296296296296296 0
↪→ 0.100000000000000;1.78326474622771e-06 -0.000259259259259259 0.00333333333333333
↪→ 1;];

14
15 dragCoefficient = 0;
16 for splineAlphaIndex = 1 : length(dragCefficient_anchorPoints)
17 if dragCefficient_anchorPoints(splineAlphaIndex) <= angleOfAttack && angleOfAttack

↪→ <= dragCefficient_anchorPoints(splineAlphaIndex + 1)
18 dragCoefficient = dragCoefficient_splineCoefficients(splineAlphaIndex, 1) * (

↪→ angleOfAttack - dragCefficient_anchorPoints(splineAlphaIndex))ˆ3 ...
19 + dragCoefficient_splineCoefficients(splineAlphaIndex, 2) * (angleOfAttack

↪→ - dragCefficient_anchorPoints(splineAlphaIndex))ˆ2 ...
20 + dragCoefficient_splineCoefficients(splineAlphaIndex, 3) * (angleOfAttack

↪→ - dragCefficient_anchorPoints(splineAlphaIndex))ˆ1 ...
21 + dragCoefficient_splineCoefficients(splineAlphaIndex, 4) * (angleOfAttack

↪→ - dragCefficient_anchorPoints(splineAlphaIndex))ˆ0;
22 break;
23 end
24 end
25
26
27 %% lift coefficient
28 liftCoefficient_anchorPoints = [-180 -140 -60 0 25 140 180];
29 liftCoefficient_splineCoefficients = [-1.07943755498536e-05 0.000806775021994144 0

↪→ 0;2.75078193731700e-06 -0.000488550043988288 0.0127289991202342
↪→ 0.600000000000000;2.03492707314944e-06 0.000171637620967791 -0.0126239947214055
↪→ -0.100000000000000;-1.82365512609771e-05 0.000537924494134691 0.0299497321847434
↪→ 0.200000000000000;4.45092408658084e-06 -0.000829816850438595 0.0226524232771458
↪→ 1;-1.35093994928975e-05 0.000705751959431797 0.00838496081136407
↪→ -0.600000000000000;];

30
31 liftCoefficient = 0;
32 for splineAlphaIndex = 1 : length(liftCoefficient_anchorPoints)
33 if liftCoefficient_anchorPoints(splineAlphaIndex) <= angleOfAttack && angleOfAttack

↪→ <= liftCoefficient_anchorPoints(splineAlphaIndex + 1)
34 liftCoefficient = liftCoefficient_splineCoefficients(splineAlphaIndex, 1) * (

↪→ angleOfAttack - liftCoefficient_anchorPoints(splineAlphaIndex))ˆ3 ...
35 + liftCoefficient_splineCoefficients(splineAlphaIndex, 2) * (angleOfAttack

↪→ - liftCoefficient_anchorPoints(splineAlphaIndex))ˆ2 ...
36 + liftCoefficient_splineCoefficients(splineAlphaIndex, 3) * (angleOfAttack

↪→ - liftCoefficient_anchorPoints(splineAlphaIndex))ˆ1 ...
37 + liftCoefficient_splineCoefficients(splineAlphaIndex, 4) * (angleOfAttack

↪→ - liftCoefficient_anchorPoints(splineAlphaIndex))ˆ0;
38 break;
39 end
40 end
41
42
43 %% AWE coefficient
44 aweCoefficient = sqrt(liftCoefficientˆ2 + dragCoefficientˆ2)ˆ3 / dragCoefficientˆ2;
45
46
47 %% forces
48 % parameter
49 density = 1.2;
50 area = 10;
51
52 % drag
53 dragDirection = relativeWindVelocity / norm(relativeWindVelocity);
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54 drag = 0.5 * density * norm(relativeWindVelocity)ˆ2 * area * dragCoefficient *
↪→ dragDirection;

55
56 % lift
57 liftDirection = cross(relativeWindVelocity, [0; 1; 0]);
58 if norm(liftDirection) ˜= 0
59 liftDirection = liftDirection / norm(liftDirection);
60 lift = 0.5 * density * norm(relativeWindVelocity)ˆ2 * area * liftCoefficient *

↪→ liftDirection;
61 else
62 lift = [0; 0; 0];
63 end

Listing 4.3: Source code of the Matlab block function “aerodynamics”.

For the export to C++, the Matlab functions spline () and ppval() to evaluate a certain point
of the spline polynomials are not available. Hence, the offline calculated spline coefficients are
stored in arrays and the correct spline is chosen and evaluated for a given angle of attack α.
This block outputs the most important aerodynamic signals which are connected to scopes for
debugging and to outports for logging purposes. Here, aweCoefficient means

cAWE :=
c3ae
c2d,i

=

(√
(cd,i + cd,t)

2
+ c2l

)3

c2d,i

cd,t=0
=

(√
c2d,i + c2l

)3
c2d,i

(4.7)

which is an important factor of the maximum extracted power of AWE in Eq. (2.11) on p. 21.
The total aerodynamic force in the body fixed coordinate system is finally transformed to the

earth fixed coordinate system by the Matlab block function “body -> earth” whose code is shown
in Lst. 4.4.

1 function earth = earthToBody(body, bodyControlOrientation, bodyPositionOrientation)
2
3 earth = body;
4 orientations = [bodyControlOrientation, bodyPositionOrientation];
5
6 for i = 1 : size(orientations, 2)
7 % get angles
8 alpha = orientations(1, i);
9 beta = orientations(2, i);

10 gamma = orientations(3, i);
11
12 % rotation matrices
13 R_x = [1, 0, 0;
14 0, cos(alpha / 360 * (2 * pi)), -sin(alpha / 360 * (2 * pi));
15 0, sin(alpha / 360 * (2 * pi)), cos(alpha / 360 * (2 * pi))];
16 R_y = [cos(beta / 360 * (2 * pi)), 0, sin(beta / 360 * (2 * pi));
17 0, 1, 0;
18 -sin(beta / 360 * (2 * pi)), 0, cos(beta / 360 * (2 * pi))];
19 R_z = [cos(gamma / 360 * (2 * pi)), -sin(gamma / 360 * (2 * pi)), 0;
20 sin(gamma / 360 * (2 * pi)), cos(gamma / 360 * (2 * pi)), 0;
21 0, 0, 1];
22
23 earth = R_z * R_y * R_x * earth;
24 end

Listing 4.4: Source code of the Matlab block function “body -> earth”.

The composition of the vectors with the rotation angles bodyControlOrientation and
bodyPositionOrientation are implemented outside the “aerodynamics” subsystem and shown later
in the assembled Simulink model.
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4.1.3 Tether model

The tether is modeled as ideal spring, i.e. the spring is massless, volume less and lossless. A one
dimensional spring exerts a force Ft (index t for tether) against its deformation ∆lt according to
Hook’s law with

Ft = ct ∆lt, (4.8)

where ct ∈ R>0 [N/m] is the spring constant. The deformation or length difference under those
ideal assumptions is the difference of the actual length of the tether lt and the norm or length
of the wing’s position vector rb, i.e.

∆lt = lt − |rb|. (4.9)

Unlike a spring, a tether can only exert negative forces in regard to Eq. (4.8) and (4.9). Hence,
the magnitude of the force is given by

Ft =

{
ct (lt − |rb|) for ct (lt − |rb|) < 0

0 else.
(4.10)

This force is only a 1D vector or a scalar. The 3D tether force vector always points from the
wing to the tether escape point on the ground. So Eq. (4.10) can be seen as the x coordinate of
the 3D tether force vector that is described in a cartesian coordinate system which is rotated by
the elevation and azimuth angles, βe and γe. Here, this coordinate system is defined as tether
coordinate system denoted by a superscript t. So, the tether force vector in the tether coordinate
system is given by

F t
t =


ct (lt − |rb|)

0

0

 for ct (lt − |rb|) < 0

0 else.

Finally, the force has to be transformed into the earth fixed coordinate system by rotating it by
βe and γe using the transformation

T t→e := Rze(γe)Rye
(βe).

Altogether, the tether force in the earth fixed coordinate system is given by

F e
t = T t→e F

t
t

= Rze(γe)Rye
(βe)


ct (lt − |rb|)

0

0

 for ct (lt − |rb|) < 0

0 else.

(4.11)

A screenshot of the in Simulink implemented “tether” subsystem is shown in Fig. 4.7. The
angles βe and γe are calculated via a transformation of the position vector reb of the earth fixed
cartesian coordinate system to the earth fixed spherical coordinate system. Both transformations
are again implemented in a Matlab function block whose sources are shown in Lsts. 4.5 and 4.6.
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Figure 4.7: Screenshot of the “tether” subsystem in Simulink.

1 function [radius, beta, gamma] = earthToEarthSphere(earth)
2 % general
3 x = earth(1);
4 y = earth(2);
5 z = earth(3);
6
7 % radius and angels
8 radius = norm(earth);
9 beta = -atan2(z, sqrt(xˆ2 + yˆ2)) / (2 * pi) * 360;

10 gamma = atan2(y, x) / (2 * pi) * 360;

Listing 4.5: Source code of the Matlab block function “earth -> earthSphere”.

1 function earth = tetherToEarth(tether, beta, gamma)
2
3 R_y = [cos(beta/360 * 2 * pi), 0, sin(beta/360 * 2 * pi);
4 0, 1, 0
5 -sin(beta/360 * 2 * pi), 0, cos(beta/360 * 2 * pi)];
6 R_z = [cos(gamma/360 * 2 * pi), -sin(gamma/360 * 2 * pi), 0;
7 sin(gamma/360 * 2 * pi), cos(gamma/360 * 2 * pi), 0;
8 0, 0, 1];
9

10 earth = R_z * R_y * tether;

Listing 4.6: Source code of the Matlab block function “tether -> earth”.

4.1.4 Assembled lift AWE model

A screenshot of the model root of the assembled lift AWE plant model in Simulink is shown
in Fig. 4.8. The four main blocks in light gray, “gravitation”, “mass point dynamics”, “aero-
dynamics” and “tether”, where treated in detail in the previous sections. The properties air
density and area of the wing are already defined in Lst. 4.3 on p. 49 in line 49 and 50 with the
values 1.2 kg/m3 and 10 m2. A constant mass of the wing of 5 kg is entered as input for the
gravitational force and for the mass point dynamics. There are also initial positions and initial
velocities in constant blocks entered. All the forces are connected to the “mass point dynamics”
subsystem block. Left to the “aerodynamics” subsystem block, the relative wind velocity is cal-
culated. A constant wind velocity vector, which models a uniform wind field, is entered in the
corresponding constant block. The control pitch and yaw angular speeds are chosen as inputs.
They are integrated over time to angular positions and then assembled to a vector of control
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Figure 4.8: Screenshot of the model root of the assembled lift AWE plant model in Simulink.
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orientations. This vector is connected to the “aerodynamics” subsystem block. The position
orientation is calculated via the elevation and azimuth angles of the body’s position vector. As
described above, an offset of 90 ◦ is added to the elevation angle. The “tether” has a fictitious
spring constant of 1000 N/m. The tether speed is chosen as third input variable. The integral
of the tether speed over time is added to an initial tether length and connected to the “tether”
block. Right to the “tether” block, the mechanical power is calculated as the multiplication
of the tether speed and the norm of the tether force. A first order low pass filter with a time
constant of 180 s is used to calculate an average power. The energy is calculated as the integral
of the power over time. The most important signals are connected to outports for a visualization
in the QtPLC Control Center.

4.1.5 Simulink export to C++

In this section, the procedure is described to export the Simulink model to C++. It was tested
successfully on Mac OS X but works similar under Linux and Windows.

Before exporting the model to C++, Matlab’s current directory was set to that one where
Simulink should place the exported files. Then, “Configuration” and “Model Configuration
Parameters” on the Simulink’s menubar were clicked which opened the window depicted in
Fig. 4.9. On this first “Solver” page of the configuration window, a fixed step solver was chosen.

1.

2.
3.

4.

Figure 4.9: Screenshot of the Simulink “Solver” settings.

In the tests “ode4 (Runge-Kutta)” worked well. The fundamental step size was set to 0.010 s.
On the page “Code Generation”/“Interface”, shown in Fig. 4.10, the “MAT-file logging” option

was unselected. The main reason for this is that Simulink then does not create a variable with
the name “signals”. This would have produced compile errors later, because it is a keyword in
Qt (it is already assigned by a #define).

On the page “Code Generation”, shown in Fig. 4.11, the “Generic Real-Time Target” system
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2. unselect!1.

Figure 4.10: Screenshot of the Simulink “Code Generation”/“Interface” settings.

1.

2. 3.

4.6.

7.

8.
9. 10.

11.

12.

5.

Figure 4.11: Screenshot of the Simulink “Code Generation” settings.
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target file was selected after clicking on “Browse. . . ”. It was important to select “C++” as
language (step 5) so that Simulink creates “*.cpp” files although the exported code is C. But
the later used GCC28 compiler uses the ending to decide how to compile a file. If the files were
compiled with pure C, then the C functions of that files could not be called as expected, because
the function identifiers in Assembly from a C++ compilation differ from those of a C compilation.
Step 6 and 7 were optional to achieve a faster code execution. “Generate code only” was checked
(step 8), because the code will be added to the Qt/QtPLC project later. It was very helpful to
select “Package code and artifacts” and enter a “Zip file name”, in this case “LaweModel.zip”
(steps 9 and 10). If these last two steps were not performed, many general Matlab and Simulink
header files where general datatypes and solvers are specified would have been missed. Finally,
with the click on the buttons “Apply” and “Generate code”, all needed files are generated and
packed in the “LaweModel.zip” file which is placed in Matlab’s current working directory. The
decompressed ZIP file is the “LaweModel” directory with subdirectories, “*.h” and “*.cpp” files.
This directory is later added to the Qt project.

Figure 4.12: Qt Creator with the opened “AirborneWindEnergyExample” and “QtPlc” projects.

4.2 Implementation of the example lift AWE applications

The example lift AWE project has three applications, i.e. three processes:

• the master command line application,

28GNU Compiler Collection.
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• the model command line application where the exported C++ files from Matlab/Simulink
are utilized and

• the QtPLC Control Center GUI application.

Two solutions are presented for the model, a “normal” and a “compact” version, but only one
is executed for the simulation. Fig. 4.12 gives an impression of the Qt Creator IDE where both,
the final “AirborneWindEnergyExample” project and the “QtPlc” library project, are opened.
The Qt version 4.8.5 was used.

The whole section may be read like a QtPLC tutorial, but detailed background information is
given. Again, several source codes are presented, but not every single line is explained in detail.
It is assumed that the reader has good knowledge in C++ and Qt.

4.2.1 General directory and project structure

Fig. 4.13 gives an overview of the directory structure. “AirborneWindEnergyExample” contains

AirborneWindEnergyExample

QtPlc

[Application]
[Application.pro]
Sources

*.h
*.cpp

Signals

Resources
Temporary
Binary

SignalIndexTable.ini

QtPlc.pro
Sources

*.h
*.cpp

Resources

Temporary
Binary

Documentation

AirborneWindEnergyExample.pro
AirborneWindEnergyExample.pri

Figure 4.13: Overview of the directory structure of the “AirborneWindEnergyExample” and
“QtPlc” projects.

the sources and the binaries of the applications and “QtPlc” contains the sources and the binary
of the QtPLC library. The “AirborneWindEnergyExample” directory is divided into directories
for the individual applications, i.e. the directories “Master”, “Model”, “CompactModel” and
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“ControlCenter”. In the additional “Signals” directory only the “SignalIndexTable.ini” file is
stored. In this INI file all global signals are defined that can be exchanged between the processes.
Any process can chose any of these signals as inputs and as outputs. This is similar to control
engineering tools like Simulink where the different blocks are connected with arrows. In QtPLC,
the blocks are the slave processes and the arrows are the signals. These signal connections are
managed by the slave processes themselves by informing the master about their input and output
signals, see also Fig. 3.2 on p. 29. The content of “SignalIndexTable.ini” is shown in Lst. 4.7.

1 ;NETWORK NODES
2
3 [masterTime]
4 type = DateTime
5
6 [masterJitter]
7 type = Real
8
9 [masterWorkload]

10 type = Real
11
12 [modelWorkload]
13 type = Real
14
15
16
17 ;CONTROL INPUTS
18
19 [bodyControlPitchSpeed]
20 type = Real
21
22 [bodyControlYawSpeed]
23 type = Real
24
25 [tetherSpeed]
26 type = Real
27
28
29
30 ;STATES
31
32 [bodyPosition_earth]
33 type = RealTriple
34
35 [bodyVelocity_earth]
36 type = RealTriple
37
38 [windVelocity_earth]
39 type = RealTriple
40
41 [bodyControlOrientation]
42 type = RealTriple
43
44 [bodyPositionOrientation]
45 type = RealTriple
46
47 [angleOfAttack]
48 type = Real
49
50 [dragCoefficient]
51 type = Real
52
53 [liftCoefficient]
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54 type = Real
55
56 [aweCoefficient]
57 type = Real
58
59 [gravitationalForce_earth]
60 type = RealTriple
61
62 [aerodynamicForce_earth]
63 type = RealTriple
64
65 [tetherForce_earth]
66 type = RealTriple
67
68 [tetherLength]
69 type = Real
70
71 [power]
72 type = Real
73
74 [averagePower]
75 type = Real
76
77 [energy]
78 type = Real

Listing 4.7: “SignalIndexTable.ini”.

Here, the global signals for this project are defined. A signal is defined with its name in square
brackets. Below that, a mandatory type has to be chosen which must be one of

• Int8,

• Bool (= Int8),

• Int16,

• Int32,

• Int (= Int32),

• Int64,

• UInt8,

• Byte (= UInt8),

• UInt16,

• UInt32,

• UInt (= UInt32),

• UInt64,

• Real32,

• Real (= Real32),

• Real64,

• Real32Triple,
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• RealTriple (= Real32Triple),

• Real64Triple,

• String or

• DateTime.

In QtPLC a signal value of such a type is stored in a QPlcValue object which is like a union
for these types and is thus comparable to QVariant. Additionally, a QPlcValue of any type can
be converted to and from a QByteArray. For the primitive types like integer and floating point,
these conversions are implemented with the correct byte order with the union QSplitPrimitive
of the QtPLC library

The main project file “AirborneWindEnergyExample.pro” is shown in Lst. 4.8 and only in-
cludes all subdirectories.

1 TEMPLATE = subdirs
2 SUBDIRS = $$system(find . -type d -d 1)

Listing 4.8: “AirborneWindEnergyExample.pro”.

Each application (directory) has its own project file and contains the following directories, see
Fig. 4.13 on p. 58:

• the “Sources” directory in which all “*.h” and “*.cpp” files are located, optionally also
inside subdirectories,

• optionally the “Resources” directory in which a Qt resource file and the actual resources
are located,

• the “Temporary” directory in which temporary build files are located and

• the “Binary” directory where the final binary file is located.

The same directory structure is used for the “QtPLC” library project. Here, an addi-
tional “Documentation” directory contains the with Doxygen29 generated documentation. The
“Sources” directory of “QtPLC” further contains a “Core” and “Gui” directory to group the
QtPLC classes. Additionally, in that “Sources” directory is the file “QtPlc” which is a header
file without “.h” ending. This header file includes all header files of the QtPLC library. So in
an QtPLC application, just #include <QtPlc> needs to be added to include the whole QtPLC
library.

The project file of each application of the “AirborneWindEnergyExample” project is sparse.
As an example, the content of the “Master.pro” project file is shown in Lst. 4.9.

1 TARGET = Master
2 CONFIG += Console
3
4 PRO = $$PWD
5 include(../AirborneWindEnergyExample.pri)

Listing 4.9: “Master.pro”.

Here, only the TARGET is set and the application is configured to be a Console application. Then
the project file directory path is stored in the PRO variable in line 4 and the “AirborneWindEn-
ergyExample.pri” file is included which performs all tasks that are identical in each application’s
project. The content of this file is shown in Lst. 4.10.

29Van Heesch, Dimitri: “Doxygen”. http://doxygen.org, accessed: December 06, 2013.
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1 #HEADERS AND SOURCES
2
3 exists($$PRO/Sources) {
4 SOURCEDIRS += $$system(find $$PRO/Sources -type d)
5 SOURCES += $$system(find $$PRO/Sources -name ’*.cpp’)
6 HEADERS += $$system(find $$PRO/Sources -name ’*.h’)
7 }
8 exists($$PRO/Resources): RESOURCES += $$system(find $$PRO/Resources -name ’*.qrc’)
9

10 INCLUDEPATH = $$SOURCEDIRS
11 DEPENDPATH = $$SOURCEDIRS
12
13
14
15 #QT CONFIGURATION
16
17 Console {
18 CONFIG += console
19 CONFIG -= app_bundle
20 }
21 TEMPLATE = app
22
23
24
25 #LIBRARIES
26
27 QT += core network gui opengl
28
29 QMAKE_CXXFLAGS += -std=c++11
30
31 CONFIG += staticLinkedQtPlc
32
33 staticLinkedQtPlc {
34 INCLUDEPATH += ../../QtPlc/Sources \
35 ../../QtPlc/Sources/Core \
36 ../../QtPlc/Sources/Gui
37 LIBS += -L../../QtPlc/Binary -lQtPlc
38 #POST_TARGETDEPS += ../../QtPlc/Binary/libQtPlc.a
39 } else {
40 SOURCEDIRS += $$system(find $$PRO/../../QtPlc/Sources -type d)
41 SOURCES += $$system(find $$PRO/../../QtPlc/Sources -name ’*.cpp’)
42 HEADERS += $$system(find $$PRO/../../QtPlc/Sources -name ’*.h’)
43 exists($$PRO/Resources): RESOURCES += $$system(find $$PRO/../../QtPlc/Resources -

↪→ name ’*.qrc’)
44
45 INCLUDEPATH = $$SOURCEDIRS
46 DEPENDPATH = $$SOURCEDIRS
47 }
48
49
50
51 #DIRECTORIES
52
53 DESTDIR = ./Binary
54
55 unix: COMILINGDIR = ./Temporary/Unix
56 macx: COMILINGDIR = ./Temporary/Mac
57 win32: COMILINGDIR = ./Temporary/Win
58 MOC_DIR = $$COMILINGDIR
59 OBJECTS_DIR = $$COMILINGDIR
60 UI_DIR = $$COMILINGDIR
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61 RCC_DIR = $$COMILINGDIR

Listing 4.10: “AirborneWindEnergyExample.pri”.

The headers and sources are not included in the standard Qt project file way where every single
file would have been listed with its path. Instead, in lines 1 . . . 11 all directories, “*.h” and
“*.cpp” files in the “Sources” directory and its subdirectories are fetched by a system call. The
same procedure is used for the “*.qrc” resource file in the “Resources” directory. The advantage
of this approach is that anything in “Sources” is added automatically to the project. This
is very beneficial for the bunch of “*.h” and “*.cpp” files from the exported Simulink model
whose uncompressed ZIP file just needs to be dropped in the “Sources” directory. However, the
disadvantage is that the used system call is not platform independent. In lines 15 . . . 17 the Qt
application type is set, in line 27 the used Qt modules are included and in line 29 the C++11
flag is added to the compiler flags. The whole QtPLC library uses C++11 features. So if this
flag was not set, compiler errors would appear. In lines 31 . . . 47 the QtPLC library is included:
Either the binary library file is linked statically or all sources and headers of QtPLC are added
directly to the project. The latter can be obtained by commenting out line 31 and was useful
for debugging the QtPLC classes. In the last lines 55 . . . 61 the output directories are defined.

The project file of the QtPLC library looks quite similar, but here no additional “*.pri” file is
used. The content of “QtPlc.pro” is shown in Lst. 4.11.

1 #GENERAL CONFIGURATION
2
3 #Logging Policy
4 CONFIG += AbnormalLogging
5 #CONFIG += DebugLogging
6
7
8
9 #HEADERS AND SOURCES

10
11 PRO = $$PWD
12
13 SOURCEDIRS = $$system(find $$PRO/Sources -type d)
14 SOURCES += $$system(find $$PRO/Sources -name ’*.cpp’)
15 HEADERS += $$system(find $$PRO/Sources -name ’*.h’)
16 exists($$PRO/Resources): RESOURCES += $$system(find $$PRO/Resources -name ’*.qrc’)
17
18 HEADERS += Sources/QtPlc Sources/QtPlcCore Sources/QtPlcGui
19
20 INCLUDEPATH += $$SOURCEDIRS
21 DEPENDPATH += $$SOURCEDIRS
22
23
24
25 #APPLY GLOBAL DEFINITIONS FROM CONFIGURATION
26
27 #Logging Policy
28
29 DEFINES += AbnormalLogging=1
30 DEFINES += DebugLogging=2
31
32 AbnormalLogging: DEFINES += LoggingPolicy=AbnormalLogging
33 DebugLogging: DEFINES += LoggingPolicy=DebugLogging
34
35
36
37 #QT CONFIGURATION
38
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39 TEMPLATE = lib
40 CONFIG += staticlib
41
42
43
44 #LIBRARIES
45
46 QT += core network gui opengl
47
48 QMAKE_CXXFLAGS += -std=c++11
49
50
51
52 #DIRECTORIES
53
54 DESTDIR = ./Binary
55
56 unix: COMILINGDIR = ./Temporary/Unix
57 macx: COMILINGDIR = ./Temporary/Mac
58 win32: COMILINGDIR = ./Temporary/Win
59 MOC_DIR = $$COMILINGDIR
60 OBJECTS_DIR = $$COMILINGDIR
61 UI_DIR = $$COMILINGDIR
62 RCC_DIR = $$COMILINGDIR

Listing 4.11: “QtPlc.pro”.

For debugging a CONFIG flag for the logging policy is set in lines 3 . . . 5 which is later in
lines 25 . . . 33 resolved in a #define. When setting that flag to DebugLogging then many debug
messages are written to the console, e.g. the exact bytes of a sent or received message. The “*.h”
and “*.cpp” files are included in the same way as above in lines 9 . . . 21, only the headers without
“*.h” ending are added manually in line 18. In lines 37 . . . 40 the project is configured to be a
static library, in lines 44 . . . 48 the required Qt modules and the C++11 compiler flag are added.
In the last lines the output directories are defined.

4.2.2 Master application

The directory “AirborneWindEnergyExample/Master/Sources” contains only the file “Master-
Main.cpp” whose content is shown in Lst. 4.12. Since the name of the file which contains the
C++ main() function is arbitrary, the prefix “Master” has been added for easy distinction. This
is also applied for the other applications.

1 #include <QtPlc>
2
3 int main(int argc, char** argv)
4 {
5 QPlcCoreApplication application(argc, argv);
6
7 QPlcSignalIndexTable signalIndexTable;
8 signalIndexTable.initializeFromIniFile(application.applicationDirPath() + "/../../

↪→ Signals/SignalIndexTable.ini");
9

10 QPlcMasterNode master;
11 master.activateWorkloadMeasurement("masterWorkload");
12 master.activateJitterMeasurement("masterJitter");
13 master.setTimeSignal("masterTime");
14 master.setInterval(0.010);
15 if(!master.startServer(QPlcUnderlyingProtocol::tcp(QHostAddress::Any, 50000)))
16 return 0;
17
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18 return application.exec();
19 }

Listing 4.12: “MasterMain.cpp”.

Only 19 lines are necessary: In the first line the QtPLC headers are included. This also includes
all important Qt headers of the Qt modules QtCore, QtNetwork, QtGui and QtOpenGL, whereby
the the last two are not needed for this command line application. In line 5 a QPlcCoreApplication
object is instantiated which is a QCoreApplication object where all codecs are set to UTF-8.

In line 7 a QPlcSignalIndexTable is instantiated which is needed in every QtPLC class that
deals with signals. Here “signal” means the

• signal value and

• the signal name or signal index, respectively,

which are exchanged between the processes. Not the signals from the Qt signals and slots
mechanism are meant. Those signals are denoted as “Qt signals” throughout this thesis.
QPlcSignalIndexTable stores the name of the signals and adds an index to each signal. The
QPlcSignalIndexTable object is initialized with the “SignalIndexTable.ini” file in line 8. This
object is then used statically in many other QtPLC classes.

In line 10 a QPlcMasterNode object is instantiated and in the following two lines workload
and jitter measurements are activated. The corresponding signal names are passed as argument
in which the measurement results are stored. The measured signals from a timeout have a
timestamp in form of a time signal. So in line 13, the mandatory time signal name is set. In line
14 the master cycle time is set to 0.010 s. In line 15, the master starts its TCP server on port
50000 and accepts incoming connections from anywhere. Finally, the application is executed, i.e.
the event loop is started, in line 18.

4.2.3 Model application

The project file content of the model application is shown in Lst. 4.13 and is almost identical to
the project file of the master application in Lst. 4.9.

1 TARGET = Model
2 CONFIG += Console
3
4 PRO = $$PWD
5 include(../AirborneWindEnergyExample.pri)

Listing 4.13: “Model.pro”.

Besides the unpacked ZIP directory “LaweModel” from the C++ export of the Simulink model,
only the “ModelMain.cpp” file is placed in the “Sources” directory, whose content is shown in
Lst. 4.14.

1 #include <QtPlc>
2 #include "LaweModel.h"
3
4 class ModelNode: public QPlcSlaveNode
5 {
6 private:
7 QPlcSignalIndex _bodyControlPitchSpeedIndex;
8 QPlcSignalIndex _bodyControlYawSpeedIndex;
9 QPlcSignalIndex _tetherSpeedIndex;

10
11 QPlcSignalIndex _bodyPosition_earth_index;
12 QPlcSignalIndex _bodyVelocity_earth_index;
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13 QPlcSignalIndex _windVelocity_earth_index;
14
15 QPlcSignalIndex _bodyControlOrientationIndex;
16 QPlcSignalIndex _bodyPositionOrientationIndex;
17
18 QPlcSignalIndex _angleOfAttackIndex;
19 QPlcSignalIndex _dragCoefficientIndex;
20 QPlcSignalIndex _liftCoefficientIndex;
21 QPlcSignalIndex _aweCoefficientIndex;
22
23 QPlcSignalIndex _aerodynamicForce_earth_index;
24 QPlcSignalIndex _tetherForce_earth_index;
25 QPlcSignalIndex _gravitationalForce_earth_index;
26
27 QPlcSignalIndex _tetherLengthIndex;
28 QPlcSignalIndex _powerIndex;
29 QPlcSignalIndex _averagePowerIndex;
30 QPlcSignalIndex _energyIndex;
31
32 public:
33 ModelNode():
34 QPlcSlaveNode("Model", ErrorZeroOrderHold)
35 {
36 LaweModel_initialize(); //initialize at least once to allocate storage
37 }
38
39 protected:
40 QPlcSignalIndexList declareInputSignals()
41 {
42 QPlcSignalIndexList inputSignalIndics;
43
44 _bodyControlPitchSpeedIndex = inputSignalIndics.insert("

↪→ bodyControlPitchSpeed");
45 _bodyControlYawSpeedIndex = inputSignalIndics.insert("bodyControlYawSpeed")

↪→ ;
46 _tetherSpeedIndex = inputSignalIndics.insert("tetherSpeed");
47
48 return inputSignalIndics;
49 }
50 QPlcSignalIndexList declareOutputSignals()
51 {
52 QPlcSignalIndexList outputSignalIndices;
53
54 _bodyPosition_earth_index = outputSignalIndices.insert("bodyPosition_earth"

↪→ );
55 _bodyVelocity_earth_index = outputSignalIndices.insert("bodyVelocity_earth"

↪→ );
56 _windVelocity_earth_index = outputSignalIndices.insert("windVelocity_earth"

↪→ );
57
58 _bodyControlOrientationIndex = outputSignalIndices.insert("

↪→ bodyControlOrientation");
59 _bodyPositionOrientationIndex = outputSignalIndices.insert("

↪→ bodyPositionOrientation");
60
61 _angleOfAttackIndex = outputSignalIndices.insert("angleOfAttack");
62 _dragCoefficientIndex = outputSignalIndices.insert("dragCoefficient");
63 _liftCoefficientIndex = outputSignalIndices.insert("liftCoefficient");
64 _aweCoefficientIndex = outputSignalIndices.insert("aweCoefficient");
65
66 _aerodynamicForce_earth_index = outputSignalIndices.insert("

↪→ aerodynamicForce_earth");
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67 _tetherForce_earth_index = outputSignalIndices.insert("tetherForce_earth");
68 _gravitationalForce_earth_index = outputSignalIndices.insert("

↪→ gravitationalForce_earth");
69
70 _tetherLengthIndex = outputSignalIndices.insert("tetherLength");
71 _powerIndex = outputSignalIndices.insert("power");
72 _averagePowerIndex = outputSignalIndices.insert("averagePower");
73 _energyIndex = outputSignalIndices.insert("energy");
74
75 return outputSignalIndices;
76 }
77
78 protected:
79 QPlcSignalList initialOutputSignals()
80 {
81 LaweModel_initialize();
82 LaweModel_step(); //Matlab does not set its outports, so we need to call "

↪→ step" first
83 return collectModelOutputs();
84 }
85 void initialize(const QPlcSignalList& initialSignals)
86 {
87 distributeModelInputs(initialSignals);
88 }
89 QPlcSignalList realTimeout(const QPlcSignalList& inputSignals)
90 {
91 distributeModelInputs(inputSignals);
92 LaweModel_step();
93 return collectModelOutputs();
94 }
95
96 private:
97 void distributeModelInputs(const QPlcSignalList& inputSignals)
98 {
99 LaweModel_U.bodyControlPitchSpeed = inputSignals.value(

↪→ _bodyControlPitchSpeedIndex).toReal();
100 LaweModel_U.bodyControlYawSpeed = inputSignals.value(

↪→ _bodyControlYawSpeedIndex).toReal();
101 LaweModel_U.tetherSpeed = inputSignals.value(_tetherSpeedIndex).toReal();
102 }
103 QPlcSignalList collectModelOutputs()
104 {
105 QPlcSignalList outputSignals;
106
107 outputSignals.insert(_bodyPosition_earth_index, LaweModel_Y.

↪→ bodyPosition_earth);
108 outputSignals.insert(_bodyVelocity_earth_index, LaweModel_Y.

↪→ bodyVelocity_earth);
109 outputSignals.insert(_windVelocity_earth_index, LaweModel_Y.

↪→ windVelocity_earth);
110
111 outputSignals.insert(_bodyControlOrientationIndex, LaweModel_Y.

↪→ bodyControlOrientation);
112 outputSignals.insert(_bodyPositionOrientationIndex, LaweModel_Y.

↪→ bodyPositionOrientation);
113
114 outputSignals.insert(_angleOfAttackIndex, LaweModel_Y.angleOfAttack);
115 outputSignals.insert(_dragCoefficientIndex, LaweModel_Y.dragCoefficient);
116 outputSignals.insert(_liftCoefficientIndex, LaweModel_Y.liftCoefficient);
117 outputSignals.insert(_aweCoefficientIndex, LaweModel_Y.aweCoefficient);
118
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119 outputSignals.insert(_aerodynamicForce_earth_index, LaweModel_Y.
↪→ aerodynamicForce_earth);

120 outputSignals.insert(_tetherForce_earth_index, LaweModel_Y.
↪→ tetherForce_earth);

121 outputSignals.insert(_gravitationalForce_earth_index, LaweModel_Y.
↪→ gravitationalForce_earth);

122
123 outputSignals.insert(_tetherLengthIndex, LaweModel_Y.tetherLength);
124 outputSignals.insert(_powerIndex, LaweModel_Y.power);
125 outputSignals.insert(_averagePowerIndex, LaweModel_Y.averagePower);
126 outputSignals.insert(_energyIndex, LaweModel_Y.energy);
127
128 return outputSignals;
129 }
130 };
131
132 int main(int argc, char** argv)
133 {
134 QPlcCoreApplication application(argc, argv);
135
136 QPlcSignalIndexTable signalIndexTable;
137 signalIndexTable.initializeFromIniFile(application.applicationDirPath() + "/../../

↪→ Signals/SignalIndexTable.ini");
138
139 ModelNode modelNode;
140 modelNode.activateWorkloadMeasurement("modelWorkload");
141 modelNode.activateWatchdog(0.015);
142 if(!modelNode.connectToMasterAndWaitForConnected(QPlcUnderlyingProtocol::tcp(

↪→ QHostAddress::LocalHost, 50000)))
143 return 0;
144
145 return application.exec();
146 }

Listing 4.14: “ModelMain.cpp”.

In the first two lines the QtPLC library headers and the “LaweModel.h” header from the Simulink
model are included.

Before walking through the ModelNode class, the main function which starts in line 132 is
explained: First an application object and the signal index table are instantiated. Then the
ModelNode is instantiated, its workload measurement and its watchdog with a waiting time of
0.015 s are activated. The timeout message from the master should be received by the model
node every 0.010 s. The role of the watchdog is, to output an information if the master timeout
message was not received on time and in this particular example with an allowed jitter of +0.005 s.
Finally, the model node is connected to the master via TCP on port 50000. For this example
it is assumed that the master application is executed on the same computer so its IP address is
localhost (i.e. 127.0.0.1 for IPv4). Finally, the application object starts its event loop in line 145.

The ModelNode, starting in line 4, is a subclass of QPlcSlaveNode which manages the com-
munication with the master, watchdogs and other. To avoid expansive string comparisons by
using signal name strings, private variables for all signal indices are declared in lines 7 . . . 30. The
type QPlcSignalIndex is a 16 bit unsigned integer (i.e. typedef unsigned short). Throughout this
thesis all private variables start with an underscore “ ”.

The constructor starting in line 33 passes “Model” as name of the node and
ErrorZeroOrderHold as realtime violation policy: If the model node does not send its output
values to the master before the timer of the master triggers a new timeout, there is a real time
violation. ErrorZeroOrderHold defines, that in this case the master should output an error mes-
sage and should use the model’s output values from the previous cycle also for the current cycle.
The function LaweModel initialize () is one of two important functions provided by the C++
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files that where exported from Simulink. In this function Matlab allocates storage, so this must
be called at least once and which is done in the constructor.

In lines 40 . . . 49 the virtual function declareInputSignals () is defined and must return a
QPlcSignalIndexList. For this, the signal names are passed to the QPlcSignalIndexList:: insert ()
function in lines 44 . . . 46. This function uses internally the QPlcSignalIndexTable instance to
get the corresponding 16 bit QPlcSignalIndex value. QPlcSignalIndexList:: insert () also returns
that QPlcSignalIndex which is then stored in the ModelNode’s private variables for later usage.
The same procedure is used for the output signals in the virtual declareOutputSignals () function
in lines 50 . . . 76.

The declareInputSignals () and declareOutputSignals () functions are called during the regis-
tration process of the slave to the master, visualized in Fig. 4.14. Right after a slave node is

QPlcMasterNode QPlcSlaveNode

startServer()

establish TCP connection

QPlcMessage::Register

<realTimeViolationPolicy>, <name>

QPlcMessage::ChangeIO

<inputSignalIndices>, <outputSignalIndices>

connectToMaster()

declareInputSignals()
declareOutputSignals()

Figure 4.14: Register sequence diagram including the server start of the master.

connected successfully to the master, it registers itself to the master by sending a Register mes-
sage which contains the RealTimeViolationPolicy and the node’s name as QString. After this,
the QPlcSlaveNode sends the input and output QPlcSignalIndexs to the master, so that the mas-
ter knows which signals it must send to that slave node and expect from that slave node. This
whole process is encapsulated and abstracted in the parent QPlcSlaveNode class which collects
those input and output QPlcSignalIndexs by calling the virtual functions declareInputSignals ()
and declareOutputSignals ().

Before treating the initialization functions in lines 79 . . . 88, the implementation of the pure
virtual realTimeout() function starting in line 89 is explained: This function is called by the par-
ent QPlcSlaveNode during the real time phase, shown in the sequence diagram in Fig. 4.15: The
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QPlcMasterNode QPlcSlaveNode

timeout() //collect values from last timeout for corresponding slaves

QPlcMessage::TimeoutWithNewValues

messageReceived()

<inputSignals> //almost pure bytes

realTimeout()

QPlcMessage::Values

<outputSignals> //almost pure bytes

Figure 4.15: Real time sequence diagram for one cycle.

timer of the master triggers a timeout on which the master sends the TimeoutWithNewValues
message. Attached to this message, the new input values for the corresponding slave node are at-
tached. In order to achieve a minimum overhead, only the pure bytes of the signal values prefixed
by the two byte QPlcSignalIndex are sent in these messages. The byte size of the values may
very, e.g. an integer value has 4 bytes while a double value has 8 bytes. Since the type of a signal
is stored in the QPlcSignalIndexTable, the values can be resolved easily. With this approach,
the messages are still flexible because it is arbitrary on which position which signal is placed
or even if the message has too many signals. This repeating task of resolving and packing the
messages is done in the QPlcMessage class. In the QPlcSlaveNode::messageReceived() function,
the resolved QPlcSignalList is passed to the pure virtual realTimeout() function. QPlcSlaveNode
expects realTimeout() to return a list of output signal values with its output signal indices. Those
values are then assembled again to a low overhead message and sent back to the master. In the
implementation of the realTimeout() function in lines 89 . . . 94, first the values are distributed
to Simulink’s global LaweModel U input variables structure within the distributeModelInputs ()
function from line 97 . . . 102. The Simulink model performs a discrete time step by calling
LaweModel step() in line 92. Finally, in line 93 collectModelOutputs() is called, which collects the
Simulink model’s output variables of the global LaweModel Y output structure in lines 103 . . . 129.
Here, the list of signal values with the corresponding signal indices are return in a QPlcSignalList.

The two missing initialization functions in lines 79 . . . 88 are used to initialize the states of
the controllers, models, etc. before the real time phase is started with the consecutive real time
sequences. The initialization sequence is shown in Fig. 4.16. It can be started by a slave node
by sending the InitializeAllStates message to the master. In this example implementation
this can only done by the QtPLC Control Center. With this command, the master collects
the initial output signals of each node by sending the SendYourInitialOutputStates message to
each slave node. This message is processed by the parent QPlcSlaveNode class which then calls
the virtual function initialOutputSignals (), implemented in line 79 . . . 84: In line 81 . . . 82 the
Simulink model is initialized with LaweModel initialize () and the step function LaweModel step()
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QPlcMasterNode QPlcSlaveNode

QPlcMessage::InitializeAllStates

messageReceived()initialOutputSignals()

QPlcMessage::ReceiveMyInitialOutputStates

<initialOutputSignals>

QPlcMessage::SendYourInitialOutputStates

QPlcMessage::InitializeWithValues

<initialOutputSignals>

messageReceived()initialize()

Figure 4.16: Initialization sequence diagram.

is called because Simulink does not set its output variables with LaweModel initialize () alone.
Finally, the return value of the collectModelOutputs() function is further returned in line 83.
The parent QPlcSlaveNode class then sends back the ReceiveMyInitialOutputStates message to
the master. After the master has collected all initial output signals from all slaves, it sends the
corresponding input signals as initial signals with the InitializeWithValues message to each slave
node. This message is processed by the parent QPlcSlaveNode which calls the virtual initialize()
function with the passed initial signals, implemented in line 85 . . . 88. This function only calls
the distributeModelInputs () function. So input signals are also used for initial signals. In this
particular example all initial signals are hard coded in the Simulink model and thus the last
function did not need to be reimplemented here (the default implementation in QPlcSlaveNode
does nothing, it is not a pure virtual function). However, it is included for completeness to show
how initial values can be transmitted.

The QPlcMasterNode has a state machine with the states
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QPlcMasterNode QPlcSlaveNode

QPlcMessage::StartRealTime

messageReceived()realTimeStarted()

QPlcMessage::RealTimeStarted

real time sequences

QPlcMessage::StopRealTime

messageReceived()realTimeStopped()

QPlcMessage::RealTimeStopped

Figure 4.17: Start and stop sequence diagram.

• Off, which is the initial state,

• Initializing,

• RealTime and

• WaitingForLateSlaves.
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The initialization and real time sequence can only be started, if the master is in the Off state. As
soon as the master receives the InitializeAllStates message, the master goes into the Initializing
state. In this state, it also starts a watchdog timer to aboard the initialization procedure, if
during the sequence a slave does not respond with the ReceiveMyInitialOutputStates message.
The start and stop sequences are visualized in Fig. 4.17: With the StartRealTime message the
real time phase is started. This message can be sent by any slave, but in this example only by
the QtPLC Control Center. The master informs all slaves about the start of the real time phase
with the RealTimeStarted message and starts its timer. If the master’s timer triggered a timeout
and a slave with the SilentWait or ErrorWait real time policy has not answered, the master stops
its timer and goes into the WaitingForLateSlaves state. These real time policies are beneficial
for software-in-the-loop tests on non real time operating systems. As soon as all late slaves have
sent their outputs, the master returns to the RealTime state. The real time sequence can be
stopped by sending the Stop message to the master.

The whole communication is implemented with sockets, namely QPlcMasterSocket used by
QPlcSlaveNode (since a slave writes messages to the master) and QPlcSlaveSockets used by
QPlcMasterNode (since the master writes messages to the slaves). Those sockets encapsulate
the actual QTcpSocket. So in later implementations also other sockets like the QUdpSocket or
sockets from other libraries can be chosen, by changing the choice of the QPlcUnderlyingProtocol.

4.2.4 Compact model application

The last section explained in detail how the communication works and how much already is
abstracted by the QPlcSlaveNode. However, QtPLC provides several subclasses of QPlcSlaveNode
for further simplifications: In the “CompactModel” application the model node is implemented
with the QPlcCompactSlaveNode.

The “CompactModel” project uses the same from Simulink exported C++ files which are
located in the “Model/Sources” directory. So the project file is slightly different from that of the
last section and is shown in Lst. 4.15.

1 TARGET = CompactModel
2 CONFIG += Console
3
4 PRO = $$PWD
5
6 SOURCEDIRS += $$system(find $$PRO/../Model/Sources/LaweModel -type d)
7 SOURCES += $$system(find $$PRO/../Model/Sources/LaweModel -name ’*.cpp’)
8 HEADERS += $$system(find $$PRO/../Model/Sources/LaweModel -name ’*.h’)
9

10 include(../AirborneWindEnergyExample.pri)

Listing 4.15: “CompactModel.pro”.

So the “Sources” directory only contains the “CompactModelMain.cpp” file. Its content is
shown in Lst. 4.16.

1 #include <QtPlc>
2 #include "LaweModel.h"
3
4 class CompactModelNode: public QPlcCompactSlaveNode
5 {
6 private:
7 QPlcCompactSignal _bodyControlPitchSpeed = QPlcCompactSignal("

↪→ bodyControlPitchSpeed", QPlcCompactSignal::Input, this);
8 QPlcCompactSignal _bodyControlYawSpeed = QPlcCompactSignal("bodyControlYawSpeed

↪→ ", QPlcCompactSignal::Input, this);
9 QPlcCompactSignal _tetherSpeed = QPlcCompactSignal("tetherSpeed",

↪→ QPlcCompactSignal::Input, this);
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10
11 QPlcCompactSignal _bodyPosition_earth = QPlcCompactSignal("bodyPosition_earth",

↪→ QPlcCompactSignal::Output, this);
12 QPlcCompactSignal _bodyVelocity_earth = QPlcCompactSignal("bodyVelocity_earth",

↪→ QPlcCompactSignal::Output, this);
13 QPlcCompactSignal _windVelocity_earth = QPlcCompactSignal("windVelocity_earth",

↪→ QPlcCompactSignal::Output, this);
14
15 QPlcCompactSignal _bodyControlOrientation = QPlcCompactSignal("

↪→ bodyControlOrientation", QPlcCompactSignal::Output, this);
16 QPlcCompactSignal _bodyPositionOrientation = QPlcCompactSignal("

↪→ bodyPositionOrientation", QPlcCompactSignal::Output, this);
17
18 QPlcCompactSignal _angleOfAttack = QPlcCompactSignal("angleOfAttack",

↪→ QPlcCompactSignal::Output, this);
19 QPlcCompactSignal _dragCoefficient = QPlcCompactSignal("dragCoefficient",

↪→ QPlcCompactSignal::Output, this);
20 QPlcCompactSignal _liftCoefficient = QPlcCompactSignal("liftCoefficient",

↪→ QPlcCompactSignal::Output, this);
21 QPlcCompactSignal _aweCoefficient = QPlcCompactSignal("aweCoefficient",

↪→ QPlcCompactSignal::Output, this);
22
23 QPlcCompactSignal _aerodynamicForce_earth = QPlcCompactSignal("

↪→ aerodynamicForce_earth", QPlcCompactSignal::Output, this);
24 QPlcCompactSignal _tetherForce_earth = QPlcCompactSignal("tetherForce_earth",

↪→ QPlcCompactSignal::Output, this);
25 QPlcCompactSignal _gravitationalForce_earth = QPlcCompactSignal("

↪→ gravitationalForce_earth", QPlcCompactSignal::Output, this);
26
27 QPlcCompactSignal _tetherLength = QPlcCompactSignal("tetherLength",

↪→ QPlcCompactSignal::Output, this);
28 QPlcCompactSignal _power = QPlcCompactSignal("power", QPlcCompactSignal::Output

↪→ , this);
29 QPlcCompactSignal _averagePower = QPlcCompactSignal("averagePower",

↪→ QPlcCompactSignal::Output, this);
30 QPlcCompactSignal _energy = QPlcCompactSignal("energy", QPlcCompactSignal::

↪→ Output, this);
31
32 public:
33 CompactModelNode():
34 QPlcCompactSlaveNode("CompactModel", ErrorZeroOrderHold)
35 {
36 LaweModel_initialize(); //initialize at least once to allocate storage
37 }
38
39 protected:
40 void compactInitializeOutputSignals()
41 {
42 LaweModel_initialize();
43 LaweModel_step(); //Matlab does not set its outports, so we need to call "

↪→ step" first
44 collectOutputs();
45 }
46 void initialized()
47 {
48 collectInputs();
49 }
50 void compactRealTimeout()
51 {
52 collectInputs();
53 LaweModel_step();
54 collectOutputs();
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55 }
56
57 private:
58 void collectInputs()
59 {
60 LaweModel_U.bodyControlPitchSpeed = _bodyControlPitchSpeed;
61 LaweModel_U.bodyControlYawSpeed = _bodyControlYawSpeed;
62 LaweModel_U.tetherSpeed = _tetherSpeed;
63 }
64 void collectOutputs()
65 {
66 _bodyPosition_earth = LaweModel_Y.bodyPosition_earth;
67 _bodyVelocity_earth = LaweModel_Y.bodyVelocity_earth;
68 _windVelocity_earth = LaweModel_Y.windVelocity_earth;
69
70 _bodyControlOrientation = LaweModel_Y.bodyControlOrientation;
71 _bodyPositionOrientation = LaweModel_Y.bodyPositionOrientation;
72
73 _angleOfAttack = LaweModel_Y.angleOfAttack;
74 _dragCoefficient = LaweModel_Y.dragCoefficient;
75 _liftCoefficient = LaweModel_Y.liftCoefficient;
76 _aweCoefficient = LaweModel_Y.aweCoefficient;
77
78 _aerodynamicForce_earth = LaweModel_Y.aerodynamicForce_earth;
79 _tetherForce_earth = LaweModel_Y.tetherForce_earth;
80 _gravitationalForce_earth = LaweModel_Y.gravitationalForce_earth;
81
82 _tetherLength = LaweModel_Y.tetherLength;
83 _power = LaweModel_Y.power;
84 _averagePower = LaweModel_Y.averagePower;
85 _energy = LaweModel_Y.energy;
86 }
87 };
88
89 int main(int argc, char** argv)
90 {
91 QPlcCoreApplication application(argc, argv);
92
93 QPlcSignalIndexTable signalIndexTable;
94 signalIndexTable.initializeFromIniFile(application.applicationDirPath() + "/../../

↪→ Signals/SignalIndexTable.ini");
95
96 CompactModelNode compactModelNode;
97 compactModelNode.activateWorkloadMeasurement("modelWorkload");
98 compactModelNode.activateWatchdog(0.015);
99 if(!compactModelNode.connectToMasterAndWaitForConnected(QPlcUnderlyingProtocol::tcp

↪→ (QHostAddress::LocalHost, 50000)))
100 return 0;
101
102 return application.exec();
103 }

Listing 4.16: “CompactModelMain.cpp”.

The main function in lines 89 . . . 103 is hardly different to that of Lst. 4.14, so only the
CompactModel class definition starting in line 4 needs to be explained: Instead of using
QPlcSignalIndexs, the main difference to the last section is the use of QPlcCompactSignals.
The private QPlcCompactSignal variables are instantiated and initialized in lines 7 . . . 30. The
direct assignment of the variables is possible in C++11. A QPlcCompactSignal contains three
important properties which are passed as arguments to the constructor:
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• The first argument is the signal name string, which is internally resolved using the
QPlcSignalIndexTable instance,

• the second argument specifies if it is an input or output and

• the third argument specifies for which slave node the second argument (input or output)
is meant, which is in all cases this .

The QPlcCompactSignal constructor then appends itself to a list of input and out-
put signals, respectively, of the QPlcCompactSlaveNode object. The signal in-
dices are then passed to the parent QPlcSlaveNode class in the reimplemented vir-
tual functions QPlcCompactSlaveNode::declareInputSignals() and QPlcCompactSlaveNode::
declareOutputSignals (). Due to operator overloading in C++, QPlcCompactSignal objects can
be used like intrinsic type variables, like ints or floats.

Except of the name string of the node, the constructor in lines 33 . . . 37 is identical to that of the
ordinary model node of the last section. In line 50 the pure virtual function compactRealTimeout
is implemented. This function now neither accepts input signal values as argument nor returns
output signal values. This is not intuitive and is one reason why both slave node implemen-
tation variants are presented. After the the node received the timeout message from the mas-
ter, the parent QPlcCompactSlaveNode sets its input QPlcCompactSignals to the correct value.
Then it calls the pure virtual compactRealTimeout() function, which is implemented in lines
50 . . . 55. Finally, it collects the values of the output QPlcCompactSignals and returns them to
the master. Similar to the last section, the two functions collectInputs () and collectOutputs ()
are called in compactRealTimeout() before and after the call of LaweModel step(), respec-
tively. In the collectInputs () and collectOutputs () functions in lines 58 . . . 63 and 64 . . . 86,
the QPlcCompactSignal variables are used like intrinsic variables to set and read the global
Simulink structures LaweModel U and LaweModel Y, respectively.

In conclusion, this source code is much more compact – a third less lines than the model code
from the last section. Additionally, the code is better readable because it is more abstract.

4.2.5 Control center application

Before digging into the source code of the QtPLC Control Center application, the final result is
discussed. A screenshot is shown in Fig. 4.18. The similarity of the design to Qt Creator in
Fig. 4.12 on p. 57 is not by accident, since the library is named “QtPLC”. However, not a single
line of the Qt Creator source code was used for the Qt PLC Control Center.

The whole GUI is build up modularly and customizable: There is one main window into which
several views or “widgets” are docked. With the toolbar buttons on the left side, more widget
instances can be opened and the QtPLC Control Center can be connected to or disconnected
from the master. A new widget is opened in a new window and may be docked in the main
window at any position. Any widget may be undocked from the main window by clicking the
undock button with the up-arrow icon. The widgets’ sizes can be adjusted by moving their
borders with the mouse. A widget is dismissed by clicking the “x” button.

In Fig. 4.18 only four different types of widgets are shown:

• One “Keyboard Controller” widget in the top left corner with which the three control
variables pitch speed, yaw speed and tether speed are set using the corresponding keyboard
buttons.

• Four “Gauge” widgets, three below the keyboard controller widget and one in the bot-
tom right corner. The gauges have different visualization settings and show the values of
different signals. The “Gauge” widget is included in the QtPLC library.
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Figure 4.18: Screenshot of the final QtPLC Control Center.
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• Two “Time Plot” widgets in the bottom left corner to visualize the trend of different signal
values over time. For the left “Time Plot” widget, the settings are opened by clicking on
the toothed wheel symbol. Such settings are available with that button for almost any
widget. In the “Time Plot” widget the plotted signals can be selected, added and removed.
Additionally, a gain, an offset and the color of the signal graphs can be chosen individually.
The master time signal and the time range is chosen on the bottom. The range of the
vertical axis is adjusted automatically. The “Time Plot” widget is also included in the
QtPLC library.

• Four “3D View” widgets in the top right area, for which different camera and visualization
settings are chosen: The biggest “3D View” in the middle shows the system from the earth
fixed camera, the view on the top right shows the system close to the body from the body
fixed camera and the last two views show the system also from the earth fixed camera but
from different positions. In addition to that, the last two views visualize the flight path of
the body for the last 180 s, while the “3D View” in the middle shows the flight path only
for the last 10 s. In all four views, the relative wind velocity vector is visualized in blue
and the total aerodynamic force vector is visualized in red. The wing or body is visualized
with a 3D model of a kite taken from a Google SketchUp file30. It is also possible to hide
the coordinate systems and the small earth sphere. The camera position can be changed
using the mouse and the “Shift” and “Alt” keys. This widget is implemented with the use
of the Qt3D library, which is (not yet) part of the Qt framework.

It is quite simple to write a QtPLC Control Center application with custom widgets. The
project file of the control center application is shown in Lst. 4.17.

1 TARGET = ControlCenter
2 CONFIG += Gui
3 CONFIG += Qt3D
4
5 PRO = $$PWD
6 include(../AirborneWindEnergyExample.pri)

Listing 4.17: “CompactModel.pro”.

The differences to the other project files is, that now the application is configured as “Gui” and
the Qt3D library is included.

The main file “ControlCenterMain.cpp” is shown in Lst. 4.18.

1 #include <QtPlc>
2 #include "KeyboardController.h"
3 #include "View3D.h"
4
5 int main(int argc, char** argv)
6 {
7 //gui thread
8 QPlcGuiApplication application(argc, argv);
9 application.thread()->setPriority(QThread::LowestPriority);

10
11
12 //plc thread
13 QThread* plcThread = new QThread;
14 plcThread->start(QThread::TimeCriticalPriority);
15
16
17 //slave node

303D model (edited): Noble, Jeremy: “Parafoil Kite”. http://sketchup.google.com/3dwarehouse/details?mid=
8544eaee0d6b5f946daf1f9856de2fa0&prevstart=0, accessed: October 21, 2013.
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18 QPlcSignalIndexTable signalIndexTable;
19 #ifdef Q_OS_MAC
20 signalIndexTable.initializeFromIniFile(application.applicationDirPath() + "

↪→ /../../../../../Signals/SignalIndexTable.ini");
21 #else
22 signalIndexTable.initializeFromIniFile(application.applicationDirPath() + "

↪→ /../../Signals/SignalIndexTable.ini");
23 #endif
24
25 QPlcIOBufferSlaveNode* slaveNode = new QPlcIOBufferSlaveNode("ControlCenter",

↪→ QPlcIOBufferSlaveNode::SilentZeroOrderHold, false);
26 slaveNode->moveToThread(plcThread);
27
28 QPlcFrameRateLimiter* frameRateLimiter = new QPlcFrameRateLimiter(slaveNode);
29 frameRateLimiter->setFrameRateLimit(50);
30
31
32 //control center
33 QPlcControlCenter* controlCenter = new QPlcControlCenter;
34 controlCenter->addAvailableWidget(QPlcWidget::registerFactory(new

↪→ KeyboardControllerFactory));
35 controlCenter->addAvailableWidget(QPlcWidget::registerFactory(new

↪→ QPlcGaugeFactory));
36 controlCenter->addAvailableWidget(QPlcWidget::registerFactory(new

↪→ QPlcTimePlotFactory));
37 controlCenter->addAvailableWidget(QPlcWidget::registerFactory(new View3DFactory

↪→ ));
38 controlCenter->restoreView();
39 controlCenter->show();
40
41
42 //connections
43 QObject::connect(frameRateLimiter, SIGNAL(timedOut(QList<QPlcSignalList>)),

↪→ controlCenter, SLOT(realTimeout(QList<QPlcSignalList>)));
44
45 QObject::connect(controlCenter, SIGNAL(connectRequested(QPlcUnderlyingProtocol)

↪→ ), slaveNode, SLOT(connectToMaster(QPlcUnderlyingProtocol)));
46 QObject::connect(slaveNode, SIGNAL(connectedToMaster()), controlCenter, SLOT(

↪→ connectedToMaster()));
47 QObject::connect(slaveNode, SIGNAL(errorWithMaster(QPlcAbstractSocket::

↪→ SocketError)), controlCenter, SLOT(errorWithMaster(QPlcAbstractSocket::
↪→ SocketError)));

48
49 QObject::connect(controlCenter, SIGNAL(disconnectRequested()), slaveNode, SLOT(

↪→ disconnectFromMaster()));
50 QObject::connect(slaveNode, SIGNAL(disconnectedFromMaster()), controlCenter,

↪→ SLOT(disconnectedFromMaster()));
51
52 QObject::connect(controlCenter, SIGNAL(initialOutputSignalsChanged(

↪→ QPlcSignalList)), slaveNode, SLOT(setInitialOutputSignals(QPlcSignalList
↪→ )));

53 QObject::connect(slaveNode, SIGNAL(hasInitialized(QPlcSignalList)),
↪→ controlCenter, SLOT(initialize(QPlcSignalList)));

54
55 QObject::connect(slaveNode, SIGNAL(realTimeHasStarted()), controlCenter, SLOT(

↪→ started()));
56 QObject::connect(slaveNode, SIGNAL(realTimeHasStopped()), controlCenter, SLOT(

↪→ stopped()));
57
58 QObject::connect(controlCenter, SIGNAL(inputSignalIndicesChanged(

↪→ QPlcSignalIndexList)), slaveNode, SLOT(setInputSignalIndices(
↪→ QPlcSignalIndexList)));
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59 QObject::connect(controlCenter, SIGNAL(outputSignalIndicesChanged(
↪→ QPlcSignalIndexList)), slaveNode, SLOT(setOutputSignalIndices(
↪→ QPlcSignalIndexList)));

60 QObject::connect(controlCenter, SIGNAL(sendNewOutputSignals(QPlcSignalList)),
↪→ slaveNode, SLOT(setOutputSignals(QPlcSignalList)));

61 QObject::connect(controlCenter, SIGNAL(sendMessage(QPlcMessage)), slaveNode,
↪→ SLOT(sendMessageToMaster(QPlcMessage)));

62
63
64 //initialize
65 slaveNode->setInputSignalIndices(controlCenter->inputSignalIndices());
66 slaveNode->setOutputSignalIndices(controlCenter->outputSignalIndices());
67 slaveNode->setInitialOutputSignals(controlCenter->initialOutputSignals());
68
69
70 //event loop
71 return application.exec();
72 }

Listing 4.18: “ControlCenterMain.cpp”.

In the first lines 7 . . . 14 a QPlcGuiApplication object is instantiated. This is a QApplication
object where all codecs are set to UTF-8 and the QtPLC resources are initialized. Its GUI
thread priority is set to the lowest. Then the PLC thread is instantiated and started with the
highest priority. So, here the GUI and the communication with the master are performed in
different threads, such that real time violations are not likely to occur. As for any other slave
node, in lines 17 . . . 23 the QPlcSignalIndexTable is instantiated and initialized with the INI file.
Only the path for Mac OS X is slightly different because executables in Mac OS X are packed
with most of the needed resources in a “*.app” folder. In line 25 a QPlcIOBufferSlaveNode is
instantiated with the given name string and the real time violation policy SilentZeroOrderHold,
i.e. if the control center does not answer within the master cycle time, the master just takes
silently the values from the previous cycle without an error message. Then the slave node is
moved to the PLC thread.

QPlcIOBufferSlaveNode is a thread save subclass of QPlcIOSlaveNode which further is
a subclass of QPlcSlaveNode. QPlcIOBufferSlaveNode works closely together with the
QPlcFrameRateLimiter which is instantiated in line 28. The frame rate limit is set to 50
frames per second in line 29. For high control cycle frequencies, the frame rate limiting in
combination with the QPlcIOBufferSlaveNode object is an essential feature to avoid that the
GUI lags more and more behind the master and consumes all system resources: On time-
out, the QPlcIOBufferSlaveNode receives new values from the master and stores them in
a list – or, for better imagination, in a table where in each column the signals from the
same timeout are stored. Then the QPlcIOBufferSlaveNode object of the PLC thread emits
the Qt signal QPlcSlaveNode::realTimedOut() which is caught by the QPlcFrameRateLimiter
of the GUI thread. Since a GUI is on the highest level in the automation pyramid, see
Fig. 3.1 on p. 28, usually it does not output that high time critical values to the PLC. So
QPlcIOSlaveNode sends directly back to the master the anytime before set output values with
the slot QPlcIOSlaveNode::setOutputSignals(). When a new frame is to be rendered, i.e.

• if the last frame is older than the minimum frame period time (i.e. the reciprocal of the
frame rate limit) and

• if the QPlcFrameRateLimiter caught a new QPlcSlaveNode::realTimedOut() Qt signal,

then the QPlcFrameRateLimiter takes all buffered signal values by calling the thread safe
returnAndClearInputSignalsBuffer() function of the QPlcIOBufferSlaveNode. The returned list
of signal values for the past cycles are then sent to the GUI – the QPlcControlCenter class –
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by emitting the QPlcFrameRateLimiter::timedOut() Qt signal. This specific Qt signal and slot
connection is established in line 43. The widgets in the QPlcControlCenter then add these new
values to their internal data structures and repaint themselves only once.

The most important part of this file is in lines 32 . . . 39. Here, the QPlcControlCenter is
instantiated and configured. In lines 34 . . . 37 all the widgets, that shall be available in the
QPlcControlCenter, are registered. Factories are used to enable QPlcControlCenter to instantiate
new arbitrary widgets. Before this mechanism is explained, the main function is completed: In
line 38 the QPlcControlCenter is restored to the same state when it was closed. In line 39
it is shown with call of show(). In the rest of the main file the thread safe Qt signals and
slots connections between the QPlcControlCenter and QPlcIOBufferSlaveNode are established.
Additionally, the slave node is initialized and the application’s event loop is started.

In the following the factory mechanism is explained: All the four mentioned widget types
in Fig. 4.18 on p. 77 are a subclass of QPlcWidget, which may be seen as the GUI version of
QPlcSlaveNode. Snippets of the most important parts of its header file “QPlcWidget.h” are
shown in Lst. 4.19.

1 #ifndef QPLCWIDGET_H
2 #define QPLCWIDGET_H
3
4 #include "QtHeaders.h"
5 #include "QPlcSignalIndexTable.h"
6 #include "QPlcSignalList.h"
7 #include "QPlcSignalIndexList.h"
8 #include "QPlcMessage.h"
9

10 class QPlcWidget;
11
12 class QPlcWidgetFactory
13 {
14 public:
15 virtual int type() const = 0;
16 virtual QString name() const = 0;
17 virtual ˜QPlcWidgetFactory() {}
18 virtual QPlcWidget* createNew(QWidget* parent = 0) const = 0;
19 };
20
21 class QPlcWidget: public QWidget
22 {
23 //CONSTRUCT
24 Q_OBJECT
25 //construct
26 public:
27 QPlcWidget(QWidget* parent = 0);
28
29 //type
30 public:
31 enum Type
32 {
33 Gauge,
34 TimePlot,
35 UserType
36 };
37 virtual int type() const = 0;
38
39 //factory
40 private:
41 static QList<QPlcWidgetFactory*> _factories;
42 public:
43 static QPlcWidgetFactory* registerFactory(QPlcWidgetFactory* factory);
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44 static QPlcWidgetFactory* factory(int type);
45 virtual QPlcWidgetFactory* factory() const {return factory(type());}
46
47 //...
48
49
50
51 //CONFIGURATION
52 //input signals
53 //...
54 protected:
55 void setInputSignalIndices(const QPlcSignalIndexList& inputSignalIndices);
56 //...
57
58 //output signals
59 //...
60 protected:
61 void setOutputSignalIndices(const QPlcSignalIndexList& outputSignalIndices)

↪→ ;
62 //...
63
64
65 //IO
66 //...
67
68 //values
69 public slots:
70 virtual void realTimeout(const QList<QPlcSignalList>& /*signalValues*/) {}
71 //...
72 };
73
74 #endif

Listing 4.19: Important snippets of “QPlcWidget.h”.

In lines 51 . . . 62 the input and output signal indices can be set by calling the corresponding
functions. In lines 65 . . . 71 the most important communications to the master can be accessed
by reimplementing those virtual functions in a subclass. In lines 23 . . . 37 the constructor and a
pure virtual type() function are declared.

Since the QPlcControlCenter should be able to instantiate new widgets dynamically, which is
not possible with the command new MyQPlcWidgetSubclass because types cannot be passed in
C++, this is implemented with the factory approach [30, pp. 85]: Each subclass of QPlcWidget
also creates a subclass of QPlcWidgetFactory, defined in lines 12 . . . 19. An example subclass of
that is the QPlcGaugeFactory, shown in Lst. 4.20.

1 class QPlcGaugeFactory: public QPlcWidgetFactory
2 {
3 public:
4 int type() const {return QPlcWidget::Gauge;}
5 QString name() const {return "Gauge";}
6 QPlcWidget* createNew(QWidget* parent = 0) const {return new QPlcGauge(parent)

↪→ ;}
7 };

Listing 4.20: QPlcGaugeFactory implementation in “QPlcGauge.h”.

So the creation of new objects is embedded in the implemented pure virtual function
QPlcGaugeFactory::createNew(). Since only one widget factory per widget type is needed, the
widget factory is registered with the static function QPlcWidget::registerFactory() in line 43 in
Lst. 4.19. This stores the passed factory object in the static private factories variable in line
41. This list can be accessed by the functions in lines 44 . . . 45.
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With this background, lines 34 . . . 37 of the “ControlCenterMain.cpp” file in Lst. 4.18 are
easier understandable: A new instance of the widget factory is created with new and passed
directly to the static QPlcWidget::registerFactory() function. For simplicity, this function re-
turns its argument – the new factory – which is further passed to addAvailableWidget() of the
QPlcControlCenter. The QPlcControlCenter then uses the createNew() function of the factories
to instantiate new widgets.

These are the most important concepts for the QtPLC Control Center. Although it was
interesting to dig further in the actual implementations of the different widgets, this is waived
here, because more or less standard Qt GUI implementation concepts were used. Only a few key
words shall be mentioned: Except for the comparably simple “Keyboard Controller” widget, each
widget has a canvas widget to render the actual data and some configuration widgets, which can
be shown via a click on the toothed wheel button. The “Time Plot” widget renders its graphs
with OpenGL using the QGLWidget. The “3D View” widget is the most complex widget. Its
canvas is a subclass of QGLView from the Qt3D library, so it uses OpenGL, too. All the 3D
items are a subclass of QGLSceneNode. The coordinate transformations are performed by the
appropriate creation of a QGLSceneNode tree and applying QGraphicsTransform3Ds, similar to
the Simulink implementation.

4.3 Execution performance

The processes were tested software-in-the-loop with two test setups. In both cases, the applica-
tions were compiled in “release mode” which does basically not add debug information into the
Assembly, i.e. no “-g” option for the GCC compiler, but compiles the sources with the highest
optimization, i.e. “-O2” option for the GCC compiler. So the processes ran with maximum speed.

4.3.1 Ordinary operating system setup

In the first setup, all three processes ran on a MacBook with a 2 GHz dual core processor on
the “ordinary” operating system Mac OS X 10.6.8 (Snow Leopard). The processor load was
monitored with the Activity Monitor application.

The master process occupied 3.2 % of the capacity of one processor core, i.e. 1.6 % of the overall
processor capacity. The model process, no matter if the “ordinary” or the “compact” version
was used, occupied even less: only 1.8 % of the capacity of one processor core, i.e. only 0.9 % of
the overall processor capacity. This is an interesting figure, because if the model was simulated
in Simulink, the load of the Matlab/Simulink application exceeded clearly 100 % of the capacity
of one processor core, while the simulation time ran more than approximately three times slower
than real time. So, by exporting the model to C++, an execution speed increase of a factor of
more than 150 was reached. The QtPLC Control Center application occupied almost 100 % of
the load of one processor, which is due to the high frame rate of 50 Hz.

Occasionally, the model reported watchdog timeouts and the master reported that the model
did not answer on time. Depending on what other applications ran, these notifications came up
in the magnitude of seconds. With the control cycle period time of 0.010 s, that implies that in
more than 99 % of the time, the real time constraints were met. This is again an astonishing
figure, since this was achieved on an ordinary operating system. Additionally, the master jitter,
master workload and model workload times were measured and plotted in a “Time Plot” widget.
A screenshot of that widget is shown in Fig. 4.19. The measurements are implemented in the
QtPLC library with QElapsedTimers. On Mac OS X there seems to be something that is triggered
approximately every second, which would explain the periodic peaks.
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Figure 4.19: Screenshot of the “Time Plot” widget displaying the master jitter, master workload
and model workload times while all processes ran on a MacBook with Mac OS X
10.6.8 (Snow Leopard).

4.3.2 Preempt-RT real time Linux operating system setup

In the second setup, a Raspberry Pi Model B with a 700 MHz processor and a Preempt-RT
patched Raspbian real time operating system with the Linux kernel 3.8.13-rt14+ was used. On
that, the master and the compact model where executed as chrt user with the recommended
priority 49 [14]. The QtPLC Control Center ran on the MacBook. Raspberry Pi and Macbook
where connected with a cross over ethernet cable. It was also possible to start the master and
model processes from the MacBook via SSH.

The system load on the Raspberry Pi was monitored with the “top” command line tool. On
the Raspberry Pi, the Master occupied 32 % and the model 17 % of the processor capacity. The
network load, measured on the MacBook with Activity Monitor, was only at 26 kByte/s for
incoming data and at 9 kByte/s for outgoing data.

In that setup, not a single real time violation was reported, even not when the watchdog timer
of the model was set to 0.011 s. A screenshot of the “Time Plot” widget for this setup is shown in
Fig. 4.20. Note that the range of the vertical axis compared to Fig. 4.19 is smaller. Even under
heavy load on the Raspberry Pi, by opening other applications, the values kept within that low
magnitude. Note that the workload time does not show the real workload. E.g. for the slave
nodes, the corresponding QElabsedTimer for this measurement is started after the bytes of the
timeout message from the master were received and packed to a QPlcMessage. Before that, also
the Qt events are dispatched in the event queue. So this overhead is not measured. Additionally,
although the QElabsedTimer is stopped after the answer message was built and sent, there is
still some overhead by returning from the functions and other Qt or operating system routines.
This is similar for the master. This all explains the discrepancy between the measured system
load and the measured workload times with the “top” command line tool (divided by the control
cycle time of 0.010 s).

After that test, the master and the model processes on the Raspberry Pi were also started
without real time priority. In that case occasional real time violations in the magnitude of
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Figure 4.20: Screenshot of the “Time Plot” widget displaying the master jitter, master workload
and model workload times while master and model ran with real time priority on a
Raspberry Pi with a Preempt-RT patched Raspbian with the 3.8.13-rt14+ kernel.

seconds occurred, similar to the result from the last section. So again, in more than 99 % of the
time, the real time constraints were met.

4.4 Simulation results

Important results of the simulations are already illustrated in Fig. 4.18 on p. 77, in particular
in the “Time Plot” widgets on the bottom. Here, a uniform wind field was simulated with wind
velocity vector vew = (5 m/s, 3 m/s, 0)>. To reach the maximum power, the tether reel out speed
was set according to Eq. (2.15) on p. 23 to

vt,out =
1

3
|vw| =

1

3
|(5 m/s, 3 m/s, 0)>| ≈ 1.9 m/s

while pressing the “W” key. All the other values of the “Keyboard Controller” widget which are
applied while pressing the other keys were chosen freely, see Fig. 4.18.

The kite was flown by hand: In the reel out phase the kite was steered in figure eights with
an optimal pitch angle, i.e. a pitch angle so that the plotted AWE coefficient in the right “Time
Plot” in Fig. 4.18 became approximately maximal. At that optimal pitch angle, the magnitudes
of the aerodynamic values can be explained by the aerodynamic model in Fig. 4.4 on p. 44.
The the drag and lift coefficients in dependency of the angle of attack are plotted again in
Fig. 4.21 where the AWE coefficient cAWE as in Eq. (4.7) on p. 51 is added. Its maximum is
ĉAWE = 17.54 ≈ 18 at α ≈ 22 ◦. The power output in the reel out phase was around P ≈ 2000 W.
The periodic variations had the period time of the time that was needed to fly a half figure eight.
So the variations result from flying of curves in the figure eight, which always adds losses as
mentioned in Sec. 2.2.4 on pp. 23. The magnitude of the power can also be explained with the
maximum power extraction as in Eq. (2.11) on p. 21. With air density ρ = 1.2 kg/m3 and kite
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Figure 4.21: Drag, lift and AWE coefficients in dependency of the angle of attack.

area A = 10 m2, the theoretical maximum power is

P̂ =
2

27
ρv3wA

c3ae
c2d,i

=
2

27
ρ|vw|3AcAWE

=
2

27
· 1.2 kg/m3 · |(5 m/s, 3 m/s, 0)>|3 · 10 m2 · 17.54

≈ 3091 W.

The losses can be explained as follows: Firstly, during the simulation the average elevation angle
of the kite was βe ≈ 20 ◦. Secondly, the kite was modeled with mass mb = 5 kg. In the derivation
of the maximum extractable power both values were assumed to be zero. But in the left “Time
Plot” widget in Fig. 4.18 on p. 77 the positive peaks of the power reached ≈ 3 kW which confirms
the whole model. In a later simulation the kite was flown through the maximum power point in
the reel out phase, where P = 3091 W was reached quite exactly.

The tether length was kept between lt ≈ 100 . . . 200 m. In the reel in phase the kite was pitched
to βe ≈ −90 ◦ such that the total aerodynamic force was minimized while the altitude of the
kite kept approximately constant. In this phase only a power of P ≈ 200W was consumed. The
whole flight path for about 1.5 pumping cycles was visible in the two lower “3D Views” on the
right side of Fig. 4.18 on p. 77.

It was interesting to see in the right “Time Plot” widget of Fig. 4.18 that the angle of attack
and thus drag, lift and AWE coefficient kept approximately constant. So if the kite would
have been steered without a change of the pitch angle, an even simpler aerodynamic model
which uses constant values for the drag and lift coefficients would have been sufficient. Such a
model is actually often used for analytical derivations and was also tested successfully in another
simulation.

In the theory in Sec. 2.1.2 on pp. 14, it was stated, that rigid airplanes have a higher lift
to drag ratio than flexible wings because of a lower drag coefficient. The force equilibrium of
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Fig. 2.7 on p. 22 with the marked similar triangles implies that the magnitude of −vb,r would
be higher with a lower drag coefficient. This was tested in the implemented Simulink model by
multiplying the final drag coefficient with 1/5. In that simulation, as expected the wing flow
around 5 times faster.

When the wing was flown close to or into the zenith, it showed unrealistic behavior. This
results from the calculation of the elevation and azimuth angles which are used for the wing’s
orientation. There is a singularity, because all azimuth angles are valid for the zenith position.
One way to avoid that is to change the rotation order [1, pp. 141]. However, this would only shift
the singularity into another position. Because the singularity hardly troubles the simulations and
would imply bigger efforts to solve, it is kept untreated for now.
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5 Conclusions

In this master thesis, the relatively new AWE technology was presented with special focus on
crosswind and lift AWE. It uses a comparably low amount of parts, namely a ground based
electrical machine, a tether and a wing. Both, the theoretical power density and the already
built prototypes by researchers and companies, are promising and it seems to be possible to
achieve at least similar electrical power outputs as in classical wind energy. Some technological
aspects e.g. rigid and flexible wing concepts and the different tether concepts, were outlined. A
simple nested control strategy which consists of an orientation controller, course controller and
power controller was discussed. The key sensors and key actuators are the electrical machines
with current, angular speed and angular position sensors. Additionally, sensors for the position
of the wing, e.g. tether angle sensors or an IMU mounted at the wing, are needed. Since sensors
and actuators may be placed at different locations, a distributed PLC is crucial.

In order to build a research prototype, a cost effective and open source PLC approach was
proposed in this thesis: The PLC was designed according to the KISS principle and uses only
ordinary and inexpensive embedded computers like the Raspberry Pi or BeagleBone Black. They
are operated with a Preempt-RT patched real time Linux. With this real time operating system
it is possible to run any application with real time priority and so the Qt framework with
the Qt Creator IDE was proposed to be used as base. The communication of the nodes of
the distributed PLC was implemented with standard IP links and a simplistic master-slave
communication scheme, that does not require time synchronization. To make the development
as simple as possible and to encapsulate the repeating tasks of the distributed PLC, the QtPLC
library was developed with special focus on a simple and intuitive API and on low communication
overhead. QtPLC also contains the QtPLC Control Center GUI API. The presented QtPLC API
is the result of a couple of iterations and became an intuitive way to write a node of a distributed
PLC in C++. Together with the modular and extensible QtPLC Control Center this is a key
result of this thesis.

The presented PLC approach was evaluated according to the actual requirements for a PLC
for a lift AWE research prototype. All specifications are evaluated as fulfilled, but the real time
ability with the non-real time ethernet links have to be proven in the final system. Additionally,
this approach was compared to the quite different solutions used by other AWE researchers and
companies. Most similarities were found with the solution of the TU Delft.

A simple lift AWE plant was modeled where the tether is considered as ideal spring and
the wing as mass point with an aerodynamics model based on lift and drag coefficients. The
model was implemented in Matlab/Simulink, exported to C++ and used in an example QtPLC
project. The project contains three applications, a master, a model and the QtPLC Control
Center with which data was visualized and the wing was controlled with the keyboard. The
implementation was documented in detail with background information of the QtPLC library.
The three applications were tested with two test setups: Firstly, all processes ran on a MacBook
and secondly, the master and model processes ran on a Raspberry Pi with a Preempt-RT patched
real time Linux while the QtPLC Control Center ran on a MacBook. Here, the communication
was established with a cross over ethernet cable. The control cycle time was 0.010 s. In the first
setup, in more than 99 % of the time the real time requirement of a maximum jitter of +0.005 s
was met. In the second setup, not a single real time violation even with a maximum jitter of
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+0.001 s was noticed. Additionally, the qualitative and quantitative behavior of the model was
understandable.

The simulation worked well and may be extended and used for further studies. In conclusion,
the proposed PLC approach together with the QtPLC library seems to be a suitable solution for
both, simulations and a PLC for a research prototype.
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6 Outlook

The functionality of the QtPLC library was proven with the example lift AWE plant implemen-
tation. However, the QtPLC library is far away from being perfect and there is a list of tasks to
be done: E.g. the API documentation needs to be finished. The next development steps include
the implementation of other underlying protocols, in particular UDP, and other communication
schemes, e.g. with a lower dead time. The jitter time measurements and real time violation
detections should be refined. There are also some ideas for improvement of the QtPLC Control
Center but they are time consuming, e.g. the use of several screen tabs in the main window and
saving the screen configuration in a distinct document file.

The next steps for the QtPLC approach will also focus on the hardware side, i.e. interfacing the
embedded computers and QtPLC, respectively, with sensors and actuators. For this the QtPLC
API should be extended in the same cross platform style as Qt itself: E.g. there should be only
one CAN bus API for the different embedded computers. The actual implementation may differ
between the embedded computers, but the correct implementation should be selected internally
in QtPLC for the used embedded computer at compile time. For a hardware setup with sensors
and actuators, also a jitter measurement campaign would be due in order to prove the real time
ability. The Linux was not further optimized so far except of installing the Preempt-RT patch.
Gaining lower latencies should be possible by slimming the Linux to the necessary applications.
Additionally, the QtPLC library should be compared to the TU Delft’s framework, when it is
published, and to the OROCOS framework. From that new improvements may be gained or
parts of those frameworks may be used.

The implemented lift AWE model may be used for further investigations. With electrical
machine models, the use of empirical models for the yaw rate of the wing as in [5] and [31] and
with the use of more detailed tether models as in [32], the whole system model would become
quickly much more realistic and can be used to test controllers. The model is also easily extensible
to a drag AWE plant by adding an additional drag force on the wing in Matlab/Simulink.
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