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Assumption 1: Loyd’s model (extended)
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Assumption 2: azimuth and elevation are constant “e!ective” values
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cf.: D. Vander Lind. “Airfoil for a !ying wind turbine”. US Patent 9,709,026. July 2017. 7
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– CFD result
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– CFD result

cD = cD,0 + cD,2c
2
L

– Assumption 3: quadratic
   approximation
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https://upload.wikimedia.org/wikipedia/commons/f/fe/Airplane_vortex_edit.jpg
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1 + 2
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b2

A/nmw
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C2

L

πeA� �� �
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+CD,k,a + CD,k,o

cf.: J. Katz and A. Plotkin. Low-Speed Aerodynamics. Cambridge Aerospace Series. Cambridge University Press, 2001. ISBN: 9780521665520.

Assumption 4: thin airfoil

9



https://upload.wikimedia.org/wikipedia/commons/f/fe/Airplane_vortex_edit.jpg

CL =
cL

1 + 2
A

with A =
b2

A/nmw

CD,k = cD +
C2

L

πeA� �� �
CD,k,i

+CD,k,a + CD,k,o

cf.: J. Katz and A. Plotkin. Low-Speed Aerodynamics. Cambridge Aerospace Series. Cambridge University Press, 2001. ISBN: 9780521665520.

Assumption 4: thin airfoil

9



https://upload.wikimedia.org/wikipedia/commons/f/fe/Airplane_vortex_edit.jpg

CL =
cL

1 + 2
A

with A =
b2

A/nmw

CD,k = cD +
C2

L

πeA� �� �
CD,k,i

+CD,k,a + CD,k,o

cf.: J. Katz and A. Plotkin. Low-Speed Aerodynamics. Cambridge Aerospace Series. Cambridge University Press, 2001. ISBN: 9780521665520.

Assumption 4: thin airfoil

Assumption 5: no interaction between wings and rotors
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Assumption 6: wind contribution on
airspeed negligible along tether length

After conversions: CD,te =
1

4

dteLte

A
cD,te

11
cf. e.g.: B. Houska, M. Diehl, Optimal control for power generating kites, in: Proceedings of the 9th European Control Conference,

Kos, Greece, 2007, pp. 3560–3567.
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Fte,max ∼ Ate,coreMechanical strength:

Electrical resistance: Rte,wire ∼
Lte

Ate,wire

Rte =
Rte,wire

nte,c,+
+

Rte,wire

nte,c,−

Dielectric strength:

Total diameter, mass: [straight-forward summation]

Feasibility condition: [no overlapping electrical cables]

Ete,ins = f(Ute,n, rwire, wins)
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“Aerodynamic” power: Pa =
1

2
ρAv3aCD,rot

15



Frot,s = 2ρArot,sv
2
aa(1− a)

Prot,s = 2ρArot,sv
3
aa(1− a)2

Single rotor:

Assumption 7: actuator disk
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Frot,s = 2ρArot,sv
2
aa(1− a)

Prot,s = 2ρArot,sv
3
aa(1− a)2

Single rotor:

After conversions:

Assumption 7: actuator disk

“Aerodynamic” power: Pa =
1

2
ρAv3aCD,rot

CD,rot = 4
nrotArot,s

A� �� �
rrot

a(1− a) and ηa,+ = 1− a
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17

ηa,+ = 1 − a



Pte-loss = RteI
2
tevia
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ηa,+ = 1 − a



Pte-loss = RteI
2
tevia

Assumption 8: constant e"ciency factors for others
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vw = vw,href

ln
�

h
z0

�

ln
�

href
z0

� with h = hto + Lte sin(ϑ)

p(vw,href) =
vw,href

ṽ2w,href

exp

�
−

v2w,href

2ṽ2w,href

�

Assumption 9: logarithmic wind shear

Assumption 10: Rayleigh distribution
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Assumption 11: launch & landing energy consumption negligible
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Year energy yield: Eel,yr[Wh/yr] =
8, 760 h

1 yr
·

∞�
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Assumption 11: launch & landing energy consumption negligible
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LCOE: kLCOE =
k

Eel,yr

Yearly costs: k = kinv + kop

kinv = Kinv
I(1 + I)T/yr

(1 + I)T/yr − 1
kop = IopKinv

Kinv = kdtPel,n-ins +Kinv,o&pTotal capital costs:

Assumption 11: launch & landing energy consumption negligible
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Assumption 12: ∀vw,href ∈ [0, vw,href,cut-out] : arg{max
u

Pa} ≈ arg{max
u

Pel}
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Assumption 12: ∀vw,href ∈ [0, vw,href,cut-out] : arg{max
u

Pa} ≈ arg{max
u

Pel}

Assumption 13:
�

C2
L + C2

D,Σ ≈ CL
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as well as for mass: not possible/too hard
! INSTEAD: compute “maximum allowed” investment costs and

“maximum allowed” mass as result, which are requirements for detailed design 
• rearrange equations into sequence of explicit analytical equations
• optimize free design parameters w.r.t. cost function w/ constraints w/ CMA-ES

• optimization problem:
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max
y

K̂inv,o&p
A

s.t. y ≤ y ≤ y
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≈ 90 kW/m2
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Parameter Value
nominal airfoil lift coe"cient 4.16
tether length 370.67 m
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wing loading 1.6 t/m2 30
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•wide Region III(a) enables much lower wing loading and higher maximum 
allowed cost

• a (low) tower might cover more than its own cost
• for o!shore, the maximum allowed cost is more than the double
• the technology is scalable: the larger the system, the higher the power density 

and maximum allowed cost
• the model can reproduce measured data by Makani (model ver$cation, at 

least in part)
31
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Source of left (bottom) "gure: Damon Vander Lind. “Analysis and Flight Test Validation of High Performance Airborne Wind Turbines”. In: 
Airborne Wind Energy. Ed. by Uwe Ahrens, Moritz Diehl, and Roland Schmehl. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. Fig. 28.12. 33
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• covers dominant e!ects of all involved disciplines
• explicit, mostly analytical (white-box), based on $rst principles
• can reproduce measurements by Makani
• numerous parameter studies

Outlook:
•my dissertation/our papers: all details and additional enhancements
• airfoil optimizations
• veri$cations: wind tunnel, higher $delity models, tiny-scale (1 kW) kite 

on the way, small-scale (20 kW) kite planned
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