Technical University of Munich Department of Electrical and Computer Engineering Chair of Electrical Drive Systems and Power Electronics

8th Energy Colloquium of the Munich School of Engineering "Advances in Energy Transition"

Design Sensitivities of Drag Power Kites

by Florian Bauer (florian.bauer@tum.de) and Ralph Kennel

1 Motivation

• only 1/10th of construction material of conventional plant, Fig. 1 higher altitudes with stronger and more persistent winds • therefore lowest cost of energy than any other technology

4 Structured Sensitivity Analyses

One parameter and/or its bounds are changed in a range of values, while all other design parameters are re-optimized, Fig. 4-5.

• Question: what does a good kite power plant design look like and what are the sensitivies of design decisions?

basis: comprehensive multidisciplinary optimization model

2 Reference Scenario: Utility-Scale Biplane

All design parameters (e.g. tether length, tether voltage, tether resistance, kite aerodynamics) are optimized for reference, Fig. 2–3.

Fig. 2: Power curve of utility-scale biplane.

Fig. 4: Example: Optimization cost function in dependency of nominal tether voltage and tether resistance (tether conductor cross section area), showing a surprisingly flat optimum.

Fig. 3: Flight path of utility-scale biplane at 10 m/s wind speed.

Fig. 5: Example: Sensitivity of nominal airfoil lift coefficient on all important results.

5 Conclusions

• economic and aerodynamic parameters (especially a high lift coefficient) are most important, tether parameters are rather insensitive, Tab. 1 • enormous figures of merit achievable, e.g. power density may exceed 100 | | | / / 2

 knowledge on design sensitivities can be of high value for a kite development team, as investment- and design decisions can be well-substantiated

	$100 \text{ kVV}/\text{m}^2$	Parameter	Sensitivity on	Sensitivity on	Sensitivity on	Sensitivity on
		Environmental naramet	$\frac{K_{\rm inv,o\&p}/A}{ere for considered}$	$\frac{P_{\rm el,n}}{installation site}$	$m_{ m a,flight}$	$m_{ m a,hov,flt}$
3 Other Specific Systems			moderate	moderate	moderate	moderate
J UTIEL SPECIAL SYSTEMS		z_0	low	low	moderate	low
		λ	low	high	moderate	high
Ontimization of other specific systems including monoplane- off-		μ	high	high	high	high
optimization of other specific systems, menualing monoplane, on			Economic parameters for targeted market.			
hore_ small-scale- and tiny-scale-variants Results.		$k_{ m LCOE}$	high	moderate	moderate	moderate
nore, sman scale, and thry scale variants. Results.		I T	high	moderate	low	moderate
hinlane significantly outperforms monoplane			high	moderate	low	low
Siplane significantly outperforms monoplane		Iop Kite gerodungmice narg	metere	moderate	10W	IOW
• offshore allows triple of maximum allowed costs and has			high	high	high	high
onshore allows triple of maximum allowed costs and has		Æ.	high	moderate	high	high
double of nominal nower		$n_{\rm mw}$	high	high	high	high
		$c_{\mathrm{D},2}$	high	high	high	high
canacity factor for ontimized systems remains < 10 %		$c_{\mathrm{L,n}}= \underline{c}_{\mathrm{L,n}}=\overline{c}_{\mathrm{L,n}}$	high	high	high	high
capacity factor for optimized systems remains < 40 /0		e	high	high	high	high
("conacity factor naradox")		$C_{\mathrm{D,k,o}}$	high	moderate	moderate	moderate
(capacity factor paradox)		Rotor parameters.				
small scale variants are economically interesting		$n_{ m rot}$	low	low	low	moderate
sman-scale variants are economically interesting	Tah 1. Determined	$r_{ m rot}$	moderate	moderate	low	high
for self consumption or off grid use		$\frac{\eta_{\rm rot,+}}{T_{\rm othor,maxamotore}}$	moderate	moderate	IOW	IOW
Tor sen-consumption of on-grid use	sansitivitias on impor-	$I = I = I = \overline{I}$	low	low	low	low
	Sensitivities on impor-	$\mathcal{O}_{\text{te},n} = \mathcal{O}_{\text{te},n} = \mathcal{O}_{\text{te},n}$	high	high	low	moderate
	tant results for the	n_{tec}	low	low	low	low
in 1. Visualization of a		tether materials	low	low	low	low
ig. I. Visualization of a	utility_scale hinlane ev_	$w_{ m te,c,j}$	low	low	low	low
drag nowor" kita	utility-scale diplane ex-	$S_{ m te,mech}$	low	low	low	low
urag power kite.	pressed auglitatively	$S_{ m te,ins}$	low	low	low	low
	presseu quantativery.	$f_{ m te,c,w}$	low	low	low	low
		Powertrain subsystems	parameters.	1 • .1	1.	1
		$-\frac{\kappa_{\rm pt}}{S}$	low	low	low	moderate
		- Ground station naramet	ters and flight trai	iuw ectory narameters	IOW	mgn
		$h_{+\circ}$	moderate	moderate	low	moderate
		$-\varphi_{n}$	moderate	moderate	low	low
Further Reading:		Power curve "shaping"	parameters.			
[1] M. L. Loyd. "Crosswind kite power (for large-scale wind power production)". In: Journal of Energy 4.3 (May 1, 1980), pp. 106–111. ISSN: 0146-0412. DOI: 10.2514/3.48021. URL:		$v_{ m a,min}$	low	low	high	low
https://arc.aiaa.org/doi/10.2514/3.48021 (visited on Apr. 19, 2018).		$v_{\mathrm{a,n}}$	moderate	high	moderate	moderate
 [2] X Development LLC. "Makani". URL: https://x.company/makani/ (visited on Apr. 19, 2018). [3] F. Bauer, R. M. Kennel, C. M. Hackl, F. Campagnolo, M. Patt, and R. Schmehl. "Drag power kite with very high lift coefficient". In: Renewable Energy (Elsevier) 118.Supplement C (2018), pp. 200, 205, USSN: 0060, 1481, DOI: 10.1016/j.renene 2017.10.073, URL: http://www.sciencedirect.com/science/article/pii/S0060148117310285 (visited on Apr. 10, 2018). 		$r_{\mathrm{P}} = \underline{r}_{\mathrm{P}} = \overline{r}_{\mathrm{P}}$	low	moderate	moderate	low
		$v_{\rm w,h_{ref},cut-out}$ (onshore)	low	low	low	low
[4] F. Bauer, R. M. Kennel, C. M. Hackl, F. Campagnolo, M. Patt, and R. Schmehl, "Power Curve and Design Ont	mization of Drag Power Kites" In Rook of Abstracts of the Air-	$Result \ bounds.$	•		-	
borne Wind Energy Conference 2017. Ed. by Moriz Diehl. Rachel Leuthold. and Roland Schmehl. Freiburg. Germany: Albert Ludwigs University of Freiburg and Delft University of Tech-		$\frac{\overline{\omega}_{n}}{\overline{L}}$	low	low	moderate	low
nology, 2017, pp. 72–73. ISBN: 978-94-6186-846-6. DOI: 10.4233/uuid:4c361ef1-d2d2-4d14-9868-16541f60edc7. Conference video recording available from: www.awec2017.com (visited		$\frac{h_{\rm n}}{D}$	low	low	moderate	low
on Apr. 19, 2018).		$rac{F}{\hat{A}} ,\mathrm{n}/(Ag)$	high	high	high	high
[5] F. Bauer. "Multidisciplinary Optimization of Drag Power Kites". Dissertation. Technical University of Munich. Planned publication in 2018.		$p_{ m te-loss,A,-}$	low	low	low	low