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I. Introduction

Kites are tethered wings and promising alternatives to harvest wind energy, cf. e.g. [1-6]. The considered kite has
onboard wind turbines to generate electrical power which is transmitted to the ground via electrical cables integrated in
the tether [7, 8]. Due to the high flight speed of the kite, the airflow speed at the kite is about a magnitude higher than
the actual wind speed, which allows for a rather small size of the onboard turbines. For vertical take-off and subsequent
transition into crosswind flight, the turbines are used as propellers. This procedure is reversed for the landing when
the wind calms down or for maintenance. This airborne wind energy concept is called “crosswind kite power/drag
power” [1], or sometimes also “onboard power generation”, “‘continuous power generation”, “fly-gen”, or “airborne
wind turbine”.

Compared to conventional wind turbines, crosswind kite power promises to harvest wind energy at higher altitudes
with stronger and steadier winds, but by requiring only a fraction of the construction material. Hence, it promises to
have lower capital costs and in the end a lower Levelized Cost of Electricity. A drag power kite with a nominal electrical
power of 20kW (“Wing 7”’) was developed by the company Makani Power Inc. (in the following denoted in short by
“Makani”’) and demonstrated autonomously power generation as well as launching and landing [9, 10]. Currently, a
larger scale 600 kW system (“M600”) is being developed [9, 11-13].

The development of a drag power kite plant is challenging. One important aspect is the control of the kite. Many
researchers proposed Nonlinear Model Predictive Control for this task, cf. e.g. [2, 5, 14-20]. A drawback is the high
computational load. Researchers also developed more conventional controllers, cf. e.g. [21-23]. Fagiano et al. [24]
proposed a proportional controller on a control-oriented submodel to track the kite’s flight trajectory, which was then
used and extended by others, cf. e.g. [25]. Further studies target a maximum power point tracking-like approach to
optimize the power generation, cf. e.g. [26, 27].

However, all currently available controllers are incomplete for drag power kites and particularly do not consider
the entire wind speed range from no wind to cut-out wind. The present study aims at closing this gap, summarizing
the contributions as follows: (i) Derivation of a drag power kite plant model, suitable for controller derivations.
(ii) Derivation and proposal of a control method, which controls the kite over the entire wind speed range. This
particularly includes (ii-a) a temperature controller allowing for temporary overloading of the powertrain, (ii-b) a
limitation controller ensuring that power-, force-, speed-, and actuator constraints are satisfied, (ii-c) a tangential flight
speed controller, and (ii-d) a tangential force control allocation, which inverts the nonlinearities of the plant and allocates
the flight speed controller’s tangential force demand to the available actuators. (iii) Validation of the control method by
means of dynamic simulations and comparison of results to simulations and measurements conducted by Makani.

The kite’s modeling approach is similar to the point-mass model proposed by Fechner [25] (see also references

therein), but has a number of extensions which are in part adapted from [28, 29]. The derived model and subsequently



the derived controllers apply to crosswind flight. Launching, landing, transitions, and failures e.g. of rotors are not
considered. Nevertheless, it is shown that the model’s fidelity is sufficient for the purpose of this study.

This paper is organized as follows: Sect. II derives the model equations and Sect. III proposes the control scheme.
Sect. IV gives details on the simulation implementation. Sect. V reports simulation results and validates the model with

measurements of the Makani Wing 7. Sect. VI gives concluding remarks.

II. Model Derivation

A. Point-Mass Dynamics

Recalling Newton’s axioms, with the assumption of a constant mass, and translational kinematics, one obtains

Vi = my F e, vi(t0) = Vio, (D
Fi = Vi, ri(to) = rx, 2
FacczzFing"'Fte"'Fa’ 3)

where vy is the kite’s velocity with initial value vy ¢ at initial time 7y, ry is the kite’s position with initial value ry o, m, is
the effective airborne mass, F o is the acceleration force acting on the kite, which is also the sum of all (external) forces
F; acting on the kite, with gravitational force F, tether force Fc, and aerodynamic force F,. All vectors are given in
the flat-earth inertial reference frame, which is here defined by the right-handed north-west-up Cartesian axes for the
x-y-z base vectors with origin at the ground station tether connection projected to the flat-earth (i.e. origin has zero

altitude above ground).

B. Forces

The gravitational force can be expressed with the gravitational acceleration g as

Fy=m,y(0,0,—g)". 4

The tether is modeled as a massless spring-damper in the tether extend direction if under tension (see e.g. [25, 30, 31]

for details on tether modeling approaches). The force magnitude of the tether spring-damper (index “sd”) is given by

Fesa = Sedrie + e AVie, )



where ¢ is the spring constant, & is the damper constant, 4r is the elongation

Are = ||rk_rgs|| — L

(6)

with the ground station’s tether connection position (index “gs”) r s, the (unstrained) tether length L., and where Av¢ is

the elongation speed defined by

Avie = € @ vy

(7

with radial direction e, = dir(ry — rg). Herein, ||x|| is the Euclidian norm of some vector x, e is the dot product, and

the direction of a vector x is defined by

x/llx|| for [|x|[ # 0,
dir(x) :=

0 otherwise.

As the tether can only exert a tension force, the tether force vector is given by

—erthd if Arte > (0 and Fte,sd >0
Fe =

0 otherwise.

The aerodynamic force is generally given by
F a = F L+ F D+ F S
with lift-, drag-, and side force

1
Fr= EPV;%ACL dir(va X yy),

1
Fp = 5 pviACp dir(v,)

1
Fg = zpngCS dir(Fp x Fp),

®)

9

(10)

(1)
(12)

13)

where Ci, Cp, Cs are the lift-, drag-, and side coeflicients, p is the air density, v, is the airflow speed, A is the kite’s

reference area (projected wing area), y, is the y-axis base vector of the kite-fixed reference frame which points along the

wing span into the starboard direction, and x denotes the cross product.



C. Airflow Speed

The airflow speed is given by v, = ||v,]|| with the airflow velocity vector
Va = vw(ry) = v, (14)

where vy, (ry) is the wind velocity at the position (or altitude) of the kite. That wind velocity is vy (ri) = R,(¢w) (vw, 0,0)T
where ¢y, is the azimuth angle of the wind (i.e. the azimuth of the wind direction w.r.t. the north or the x unit vector of
the inertial reference frame) and vy, is the wind speed at the kite. Herein, rotation matrices R;(#) for rotations around a
X-, y-, and z-axis (i) about some angle # are defined using the right hand rule. The wind speed vy, in the altitude of the

. is the wind

ref

kite above ground i = z e ry (i.e. at the kite’s position) is modeled by vy = (h/ hrer) Vi, b, Where vy, p,

speed in the reference altitude above ground Ay, and ay is the Hellmann exponent, cf. e.g. [32, p. 9fF.] or [33].

D. Kite Reference Frame/Kite Orientation

The kite’s reference frame is defined as follows: The x-axis base vector xy points from the nose to the tail, the y-axis
base vector y, points along the main wing span into the starboard direction, and the z-axis base vector zy points up.
By implication, a point-mass has no defined orientation, but assuming that angle of attack «, angle of sideslip 3, and
roll angle ¢ (angle between tether and vertical kite axis) are stabilized instantaneously through according horizontal
and vertical stabilizers or/and through underlying control loops, the kite’s orientation can be modeled as follows: With
a =0, =0, and ¢ = 0 (in the following: orientation with prime), it is implied that xl’( is parallel to v,, and yl’( is

perpendicular to both v, and the tether radial direction e;. Finally, z; is perpendicular to both x; and y, . This results in
xp = dir(vy), yi = dir(er X v,), 7y = X X Vi (15)

Those vectors can be combined to the transformation matrix
Ty = (xl’( i z,’()» (16)

with which any vector given in the kite’s primed reference frame (at @ = 0, 8 = 0, = 0) can be transformed into
inertial reference frame. For arbitrary o, 8, and ¢, the orientation is given again by the analogy of transforming any
vector from the kite’s reference frame (denoted by #¥) into inertial reference frame: #* is first rotated by 8 about the

z-axis, then by a about the y-axis, and then by ¢ about the x-axis, before it is transformed with T 1’(, hence

(xk Yi Zk)=Tk=Tf<Rx(lﬁ)Ry(a)Rz(ﬁ)- (17)



To avoid to define the lift-, drag-, and side force coeflicients as function of @ and 3, but instead to use a simplified
model for the aerodynamic coefficients, the following two assumptions are made: (i) Angle of attack o and angle of
sideslip S are either both kept at zero (controlled by underlying control loops and/or empennage), or their effects are
only implicitly covered via according values of the aerodynamic coefficients. (Note that a zero kite angle of attack does
not mean a zero airfoil/wing angle of attack due to an angle of incidence unequal to zero.) (ii) The side force coefficient

is always zero. This allows to set @ = 0 and 8 = 0 in (17) which simplifies to
(xk i ) = Ty = T{R\W), (18)
and the side force (13) is zero and (10) simplifies to

FaZFL+FD. (19)

E. Total Lift and Drag Coefficients
The contributions to the total lift and drag coefficients Ci. and Cp originate from the kite’s airframe, from the tether,

and from the rotors, i.e. generally

CL=CrLx+Crge + CLyon (20)
Cp = Cpk + Cpe + Cp oty 21
———————
= C[),eq

where index “k” is for kite (or its airframe), index “te” is for tether, and index “rot” is for rotors, and where the sum of
Cpx and Cp e is also called equivalent drag coefficient Cp eq.
The kite’s main wing usually dominates the lift contribution, hence Cp e = 0, and Cp ;o = 0 with which (20)

becomes
CL=CLx = CLxmw (22)

where Crx mw is the total lift coefficient of the main wing.
The rotor drag coefficient Cp ;o is considered as a steerable actuation.

Adopted from [15, 16, 29, 30, 34-37], the tether drag contribution is modeled by

1 dieLe
4 A

CD,te =

cD,tC’ (23)



where di. is the tether’s frontal width (which is the tether’s diameter for the considered cylindrical tether design as
in [8]), cp e is the drag coeflicient of the tether’s cross section shape (which is here a circle), and L is the tether length.

The contributions to the kite’s drag coefficient originate from the main wing and other kite parts such as fuselage
and empennage. Moreover, it is considered that the kite’s drag can be steered via an actuation e.g. by air brakes. The

kite’s total drag coefficient is therefore generally given by

Cpx = Coxmw + Cpxo + Cokas 24)

[T9%1)

where index “mw” is for main wing, index “o0” is for other parts, and index “a” is for actuation.

Herein, the drag of other parts Cpx , is assumed as fixed value and the actuated drag Cp , is assumed as actuation
steerable within the range Cpxa € [Cb x.a.min» CD k.a,max]> Where Cp kx.amin = 0 and Cp x a max are the fixed minimum and
maximum steerable values.

For the main wing’s lift and drag coefficients, Ci,x mw and Cp x mw, a solution from lifting line theory is adopted,

CL

G = 25
L.k,mw 1+ 2//R ( )
CD,k,mw = CD,k,mw,p + CD,k,mw,i (26)
CD,k,mw,p = (D (27)
C2

L.k,
Cokmwi = ——20 (28)
R=Db*A (29)

where cp and cp are the lift and drag coeflicients of the main wing’s airfoil (i.e. 2D), Cp xmw,p is the main wing’s
parasitic drag, Cp x mw,i i the main wing’s induced drag, /R is the main wing’s aspect ratio, e is the main wing’s span
efficiency, and b is the main wing’s span (cf. e.g. [38, p. 1671F.]). Egs. (25)—(29) imply the assumption that aerodynamic
interferences e.g. between wings and rotors are negligible or can be modeled with appropriate values for e and Cp .

Finally, the airfoil lift and drag coefficients are related: Apart from stall, the drag coefficient of an airfoil (also called
profile drag) increases approximately quadratically with the airfoil’s lift coefficient. Hence, for ¢ € [cL min-ops CL,max-op]
with minimum and maximum operationally allowed lift coeflicients c¢1 min-op and cL max-op» Which are both before stall

including a safety margin, the airfoil’s drag coefficient can be modeled by

2
CD = Cpo + CD2CY (30)



where cp is the airfoil’s drag coefficient at ¢, = 0 and cp, is the drag coefficient slope w.r.t. the lift coefficient squared.
The maximum operational airfoil lift coefficient is also defined as the nominal airfoil lift coefficient, cp max-op =: CLn.

Here, ¢ is considered as actuation. Changes of ¢, may originate e.g. from control surface deflections.

F. Actuators
The only considered actuations, with which the kite can be controlled, are (i) the rotor drag coefficient Cp yo, (ii) the
airfoil lift coefficient cr, (iii) the actuated drag coefficient Cp x », and (iv) the roll angle ¢. The dynamics of each of the

four actuators is modeled as limited first order delay. Thus, for an actuation u € [Cp rot, ¢, Chx.a5 ¥ ],

L.
u= T_[hmlt(umin, Uset, Umax) — U], u(to) = uo, 3D

where T, is the actuation time constant, ug is the actuation set value, umi, and umnax are the minimum and maximum

actuation values, ug is the initial value, and

Umin  if Uset < Umin,
limit(min, Usets Umax) °= \ tmax  if tset > Umaxs (32)

User  Otherwise

implements actuator constraints.

G. Powertrain

With the definition of the rotor drag coefficient Cp o in (21), the rotors’ thrust force is

1
Frot = EpngCD,rot (33)

and their power, which is here called “aerodynamic power”, is
L
Py =viFot = EpVaACD,rop (34)

Generative power is defined positive while consumed' power is defined negative.
A temporary overloading of the powertrain might be crucial due to significant power oscillations within the crosswind
flight trajectory, see also [39]. Powertrains can usually be overloaded for some time in the order of seconds or tens of

seconds with a maximum overloading power in the order of twice the nominal power, until the nominal temperature of a

!Physically, power cannot be consumed but only converted. The wordings “consumed” and “consumptive” are used here for sake of brevity as
alternative e.g. for “from the grid demanded” power.



powertrain component is reached, cf. e.g. [40]. Here, the simplest possible temperature dynamics model is employed

through a single time constant, cf. e.g. [40, Sect. III]. The model can be formulated in per unit by

1
+ = (P,

7- Ploss ~ 4T 7'(to) = 13, (35)
T

where

= (- Too,n)/(Tn - Too,n) (36)

is the per unit temperature with initial value 7 at initial time 7o, absolute temperature 7, nominal absolute temperature

Tn, and nominal ambient temperature T, n; 7% is the temperature time constant [40];
75 = (Too — Too,n)/ (Th = Toon) 37
is the per unit ambient temperature with absolute ambient temperature 7,; and

Pu/Pasn if Py >0,
P = (38)

loss
Py/Py_n otherwise

is the per unit power loss in the powertrain (or its most critical component such as an electrical machine) with nominal

generative and consumptive power P, ; , and P, _,, respectively.

H. Sensors, Control Computers, Communications

For the purpose of deriving and validating a first control approach, all states and intermediate values of the model
are assumed to be available exactly to the controllers, i.e. without noise or delay. It is further assumed that control
algorithms are executed quasi-continuous, i.e. the inverse of the control frequency is much smaller than the smallest

time constant of the plant, and that communications delays are negligible.

I. Control Problem Formulation

The derived drag power kite plant model is a system of explicit nonlinear ordinary differential equations with eleven
states (velocity v in x-y-z, position r in x-y-z, the four actuations Cp rot, cL, Ch k.0, ¥, and the temperature 7). It remains
to derive controllers. This control problem can be formulated as follows: Find a control scheme which, over the entire

wind speed range, (i) keeps the aerodynamic power P,, the lift force Fi, the airflow speed v,, the temperature 7’, and the

Note that | P, + | may differ significantly from |P, | due to critical components or nonlinearities within the powertrain.



actuations Cprot, €L, Cbk.a, ¢ Within their limits, (ii) stabilizes the kite on a circular or figure eight flight path, and

(iii) harvests power optimally.

I11. Proposed Control Method

9 <

Figure 1 illustrates the proposed control scheme. Indices “min”, “max”, and “set” are for the minimum, maximum,

kite control scheme

. ¢ Pa,+,max-r > limitati (CD,rot,mins CL,min> CD,k,a,min:
emperature Imitation CD,rol,maXa CL,max» CD,k,a,max)
controller, controller,

Sect. IILLA Pa-max< Sect. I1I.B

CD,rot,set
tangential tangential CLset i kite power
speed Fian,set _|force control > lp P -
> controller, allocation, | CDkaset SI; Catn fI ]
Sect. II1.C Sect. IIL.D Yset '

flight path controller, extension of Fagiano et al. [24]

Figure 1 Block diagram of the proposed kite control scheme.

and set values, P, + max-x and P, — max-- are the maximum generative and consumptive aerodynamic powers to satisfy the
temperature limits, and Fian set is the set value of the tangential force. Those latter three quantities are introduced within
the corresponding control part derivation in the following subsections. The utilized flight path controller is an extension
of Fagiano’s approach [24], which allows for arbitrary paths including circles and inside-up figure eights. For sake of

brevity (space restriction), the flight path controller is not elaborated in this paper.

A. Temperature Controller

1. Controller Equations

The temperature controller is designed with the following rationale: It controls the powertrain’s temperature to its
nominal temperature with the virtual actuation P,, cf. (35) with (38). However, instead of applying the virtual actuation
P, directly, only a “maximum value” is computed, one for generative power P, 1 max-- and one for consumptive power
P, _ max-z- Only in the case if the tangential force control allocation needs a high power (indirectly over Cp ot set, Cf.
Fig. 1), then Py i max-< OF Py _ max-<, respectively, may indeed be actuated.

A proportional controller is chosen with “proportional pre-filter’” and “disturbance” cancelation of 7/, to avoid a

steady-state error. Moreover, as the purpose of the temperature control is to reduce the instantaneous power |P,| from

10



its instantaneous maximum Py 4 max OF |Pa— max| down to its nominal value P, 4, or P, _, if the temperature limit is
reached, a feedforward of the maximum instantaneous power is applied. Finally, the controller’s output is limited to the

maximum instantaneous power. Hence, the controller equations are

A" = GpaTiy — T’ (39)
Pa,+,max--r = limit(o s GP,TAT, - Pa,+,nT<:o + Pa,+,max s Pa,+,max) (40)
|P ,_,maX-T| = llmit(o ’ GP,TAT/ - |P ,_,an(:() + |P ,_,maX| 9 |P ,—,maX|) (41)

where A7’ is the temperature error, 7,

<ot 18 the set value of the temperature (which is the nominal temperature in per unit,

ie. 1/

st = 1), Gp- is the proportional gain, and G- is the “proportional pre-filter”. The use of absolute values, denote

by |#|, is for sake of simplicity, such that no signs have to be changed.

Figure 2 shows the block diagram of the temperature control loop. The grey part is the controller. The “actual set

P, a,#,max
/
p
= > D, a,#,n ,
T{')O
0 A
T AT’ = P. o 1 1 1 !
L GF,T —>O—T> GP,T OO / iR / | O] i
- TCD’“)tS +1 R‘l,#,l] TTS +1
temperature T actual set actuator temperature model
controller 0 value dynamics

Figure 2 Block diagram of the temperature control loop.

value”-block models that P,  max-< O Py — max-- may not directly be the set-value which is selected by the tangential
force control allocation (indirectly over Cp o set). Because of that and because at the end only a single P, value is

actually set, Egs. (40) and (41) can be combined to the short form
Pa,#,max—t = limit(o ) GP,‘cAT/ - Pa,#,nTc:o + Pa,#,max ) Pa,#,max) (42)
with

(Pa,+,max—t Pa,+,max Pa,+,n) for generatlve,
Pa,#,max—r Pa,#,max Pa,#,n = (43)

(|P”max,r| | Py max| |Pa,,n|) for consumptive.

11



The other blocks in Fig. 2 are a visualization of (31), (35), (39), and (42), where the linear-dynamic subparts are written
in the Laplace-domain with complex frequency s. The representation of Fig. 2 is also used in the following for the

controller parametrization.

2. Aerodynamic Power Limits

The maximum instantaneous (overloading) generative aerodynamic power can be defined by

Pa,+,max = fover»PPa,Jr,n (44)

with power overloading (or underloading) factor fover.p. The value of fyer.p depends on the overloading capability of the
powertrain (or its most critical component). Similarly to (44), the maximum instantaneous (overloading) consumptive

aerodynamic power, or minimum instantaneous (overloading) aerodynamic power, can be defined by

Pa,—,max = ﬁ)ver—PP ,—n- (45)

3. Controller Parametrization and Stability

In view of Fig. 2, the linearized closed loop input-output behavior (i.e. the limitation blocks become 1) is given by

1 1 1
’ ’ ’ ’ ’
T = 1 Too 1 [P a#max — Pas#nTe + Gpz (GF,TTset -7 )]
T.s + Pa,#,n TCDthS +
Pa,#,n ’ Pa,#,max GF,—. ’
Pa,#.n+Gl’,r TCDJOt ST‘X’ + Pa'#'n+Gp,r Pa#n +1 Tset
Gp~
=3 = ’ . 46
Pa,#,nTCD,mlTr 2 Pa,#,n(TCD’m[ +Tr) + 1 ( )
Pa,#.n+GP,r S Pa,#,n+GP.r §

The control loop is stable if the denominator polynomial has positive coefficients, being a 2nd order Hurwitz polynomial.
The controller is parametrized by pole-placement by comparing the denominator of (46) with that of a second order

delay
Tis® +2DyTys + 1 47)

with time constant 73 > 0 (which is the inverse of the eigen angular frequency, wy = T, 1y and damping Dy > 0 (which
is sometimes also denoted by ¢#): The closed temperature control loop time constant 73 = 7= , and damping Dy = D+

are then defined by the two equations

2 _ [)f‘-la#yl'lszD,m[]1'c

T,0 T ’ (48)
’ Pagn + Gpr

12



D T. = Pa,#,n(TCDm + T‘r) (49)
e Pa,#,n + GP,T .

There is only one degree of freedom, Gp-, so the control designer chooses T~ , or D- . Here, the latter is used, for

which Gp- is given by squaring (49), substituting (48), and solving for Gp-:

Ty + 1)
Gp~ = Pagin (2—) -1 (50)
4DT,0TCD,mt TT
The steady-state value can be determined by setting s = 0 in (46), which results in
Pa g max GF T
T/ = = Ty 51
Pa#n+GpT %4_] set ( )
w ’ Gpns
Because 7’ = 1, shall be achieved for steady-state, the prefilter Gg. must be
Pt max GFT ( Pa g max
Tét = — + Ty < Gp. =1+ Pagn— ——]|. (52)
U Pyyn + Gps 2‘—:“ 1 N Gp. \ ™" Teot

Note that both, Gp- and Gg-, may differ for the two power flow directions.

B. Limitation Controller
The limitation controller outputs the actuations limits of Cp ror, ¢, and Cp 4 (cf. Fig. 1) with which (i) not only
the actuator limits are satisfied, but also (ii) the maximum instantaneous power limits are satisfied, (iii) the powertrain

temperature limit is satisfied, and (iv) the force limits (lift force; tether force and further forces implicitly) are satisfied.

1. Rotor Drag Coefficient Upper Limit
The temperature controller outputs the maximum aerodynamic power P, + max-- (40), which satisfies both, the
temperature limit and the maximum instantaneous power (44). The upper limit for Cp yot = Cp rotmax iS readily given by

substituting Py = Pj + max-- into (34) and rearranging to

P a,+,max-t

1
Pa,+,max—-: = EPVSACD,rot,maX = CD,rot,max’ (53)

%vaA

where v, is the currently measured/identified airflow speed.

13



2. Rotor Drag Coefficient Lower Limit

Analogously to (53), the lower limit of the rotor drag coefficient is given by

P a,—,max-t

1
Pa,—,max»‘c = EPVgACD,rot,min = CD,rot,min~ (54)

%png

3. Airfoil Lift Coefficient Lower Limit

The minimum feasible airfoil lift coefficient is already defined through cp min-op-

Moreover, the lift force has some lower bound Fi i, such that the kite remains airborne (cf. [28, 29]). The
corresponding minimal airfoil lift coefficient is given by inserting F1, = Fi min and (22) with (25) into the magnitude

of (11) and solving for ¢ = cL min-F, Which is

1 FL,min (1 + %)

CL,min-F

F1 min = —pv,zA & CLminF = (55
min ) a 1+ % min % pvg A
Hence, ultimately the lower bound for the airfoil lift coefficient is
CL,min = maX{CL,min—op CL,min—F}- (56)
4. Airfoil Lift Coefficient Upper Limit
A first upper bound for ¢ is the nominal lift coefficient cpn = ¢ max-op-
A second upper bound for ¢r. is given via the maximum instantaneous lift force Fi max, Which is
FL,max = fover»FFL,n (57)

with force overloading (or underloading) factor fover-r and nominal lift force F j, that is the force for which the kite and

tether etc. are designed for. Analogously to (55), the maximum airfoil lift coefficient due to force limitations is

FL,max (1 + 1%%)

CL,max-F = (58)

% pv2A

To satisfy all upper limits, the maximum airfoil lift coefficient is
CL,max = min {CL,I]a CL,max—F} . (59)
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Because the currently measured/identified airflow speed v, is used in (58), it cannot be excluded that ¢ max < CL.min
during transients, e.g. if there is a gust. To avoid that contradiction, the maximum airfoil lift coefficient also has the

minimum airfoil lift coefficient as a lower bound and (59) is replaced by

CL,max — Max { min {CL,m CL,max»F} > CL,min } . (60)

5. Actuated Drag Coefficient Limits

The limits of Cpy 4 are already defined in Sect. II.E through Cp x a min and Cp x a.max-

C. Tangential Speed Controller

1. Tangential Direction and Tangential Dynamics
The speed controller is designed for the “tangential” kite dynamics, i.e. the dynamics in the flight direction tangential

to the sphere spanned by the tether. This direction can be defined by
€ian = €cen X €5, with ecen := dir(e; X vy) (61)

(where e, is the centripetal direction in left turns or centrifugal direction in right turns, respectively). Assuming that
the tangential direction is approximately parallel to the kite’s velocity e, ||vk, then the kite’s tangential dynamics is

given by
. -1
Vktan = My Fian, Vk,tan(t()) = Vk,tan,0 (62)

where Vi tan, Vk tan, and Fyectan = Fian are the change of speed (i.e. the acceleration), the speed, and the acceleration force

into the tangential direction (in short: tangential force Fi,y).

2. Tangential Speed Controller Equations

The speed controller is derived for the plant (62). Herein, Fian ser is used as a virtual actuator, i.e. the new set values of
the actual three actuations Cp rot set» CL set> a0d Cp k a set geNerate Fia set, but this function Fian set(Cp rot.sets CL.sets CD k.aset)
is inverted by a control allocation in a later step.

Again, simply a P-controller is utilized, i.e.
Ftan,set = GP,VAVk,t'dn’ Avk,tan = Vk tan,set — Vk,tan (63)
with speed error Avi tan, speed set value Vi tan set, and proportional gain Gp,.
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Figure 3 illustrates the tangential speed control loop. It also illustrates the idea of the tangential force control

CD,rot,set 1 CD,rot
control
. TCD,mt s+1
allocation t tial
angentia
Uk tan,set AUk tan Fian set = CL set 1 L o Flan | 1 1] Otey
o > Gpy > . ’ d force g s ]
- tangential Teps+1 i Mo ®
- h generation
spee orce
P . 5 CD,k@L,sct = 1 CD,k,a
controller generation To, .. s+ 1
D.k,a
F tan,set ~ 1 Ftan
max{Tcy oo Ter» Topia }5 + 1

Figure 3 Block diagram of the tangential speed control loop.

allocation, which inverts the static nonlinear part of the plant. It is assumed that the control allocation works perfectly,
such that the tangential force actuation can be approximated as first order delay with the actuation time constant 7, equal
to the highest time constant of the actually involved actuators, 7, = max{Tcy, . T, » Tcp ., }- This assumption can be
justified, because the here utilized simple model can indeed be perfectly inverted (for steady-state) and because the

highest actuator time constant defines when Fi,, is achieved for a set value Fian set-

3. Controller Parametrization and Stability

In view of Fig. 3 the closed loop transfer function is

Vktan 1

(64)
Vk tan,set 2’:3 s2 +
v

m, .
Goo S +1

The speed control loop is stable if Gpy > 0, because then the denominator is a 2nd order Hurwitz polynomial.
Like the temperature control loop in Sect. III.A.3, the speed control loop is parametrized through pole-placement by
comparing the denominator of (64) with that of a second order delay (47): The closed speed control loop time constant

Ty = Ty, and damping Dy = Dy, are then defined by the two equations

T.m
2 allla
=2 65
ve = Gy (65)
2Dy Ty0 = G”:‘ . (66)
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Again, there is only one degree of freedom, Gp,, so the control designer chooses T, or Dy . The latter is used here, for

which Gpy, is given by squaring (66), substituting (65), and solving for Gpy,

my
Gpy = ————. 67
Pyv 4D3’0Ta ( )
4. Tangential Speed Set Value
The optimal airflow speed from a steady drag power kite model is given by (cf. [10, Eq. (28.14)])

2 CL,

Vaopt = 3 cos(g) cos(F)vy C ., (68)
D.eq,n

where ¢ and ¢ are the azimuth and elevation angles of the kite w.r.t. the wind velocity (wind speed vector) defined by

i —Fos)®2
@ = arctany(ry @ y, ry ® X) — @y, ¥ = —arctan (ric —res) (69)

Vircex2+(reey?|

and CL, and Cpgeqn are the nominal total lift and equivalent drag coeflicients which occur at ¢ = ¢, and
Cpka = Cokamin = 01in (20)=(30). That optimal value v, o is used as the set value of the airflow speed v, e, but

bounded by the minimum and maximum values, i.e.

Va,set = limit(va,rnins Va,opts Va,max) (70)

where

Va,max = fover—vVa,n (71)

is the maximum instantaneous airflow speed set value with overloading (or underloading) factor foverv and with nominal
airflow speed v, 5, and where v, pnin is the minimum airflow speed. The latter two airflow speeds are coupled with the
nominal and minimal lift force, respectively, which both occur at the nominal airfoil lift coefficient ¢, = c1,, and at the

nominal and minimal airflow speed, respectively, i.e., similar to (55),

1 CL, F1 i
FL,min = EpviminA n2 < Vamin = l—mclf_n, (72)
I+5 \ IPATT
R
1 CL, FL’
Fin = 5pVinA—="5 & van = || T (73)
T+ S \ 7pA 1+
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From that airflow speed set value (70), the set airflow velocity is

Vaset = Va,set diI‘(Va) (74)

where v, is the currently measured/identified airflow velocity. The set kite velocity is then given by inverting (14), i.e.

Vicset = Vw(rk) = Vaget (75)

with the currently measured/identified/estimated wind velocity at the kite vy (ry). Finally, the tangential kite speed set

value is

Vk,tan,set = Vk,set ® €tan (76)

with the currently measured/identified tangential direction ey,.

D. Tangential Force Control Allocation

As mentioned in the previous section and illustrated in Fig. 3, the tangential force control allocation inverts the
tangential force generation, i.e. it computes the actuations Cp ot set> CLset> aNd Cp k.aset t0 achieve a given Fian set = Fran
in steady-state. Although it should be possible to find an analytical solution for this inversion and for the here utilized
model, a numerical solution is pursued for sake of simplicity as well as for the possibility for its use with minimal
changes in a more elaborate and more nonlinear model or real system. However, because the here utilized model is
not very nonlinear, the derived numerical solution is exact. In the following, first a few functions are defined for later

convenient use, then the proposed algorithm is detailed step by step.

1. Definition of “force”-Function

The “force”-function

Ftan,sel — force(CD,rot,set’ CLset» CD,k,a,set) (77)

computes the (steady-state) tangential force (i.e. the tangential set force) s.t. the currently measured/identified states and
s.t. the passed set values Cp rotset> CL set CDk.aset- i-€. the equations (25), (22), (11), (30), (29), (28), (27), (26), (24),
(21), (12), (10), (4, (3), and

Fian = acc,tan — Fycc o ey (78)
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are computed in that order.

2. Definition of “linpol” -Function

The “linpol”-function

x « linpol [y, (x1, y1, X2, ¥2)] (79)

linearly interpolates between two points (x1, y1) and (x, y2), and returns the value x for a given y value. If x; = xp,

“linpol” simply returns x <« xj.

3. Definition of “quadpol”-Function

The “quadpol”’-function

x « quadpol [y, (x1, y1, X2, y2, x3, ¥3)] (80)

quadratically interpolates between three points (x1, y1), (x2, y2), and (x3, y3), and returns the value x for a given y value.
Note that usually x has two results, which are both returned by “quadpol”. The actual selected value is to be chosen
outside “quadpol”, i.e. “quadpol” returns two values. In case x; = x2, x» = x3, or/and x; = x3, “quadpol” falls back to

“linpol”,

linpol [y, (x1, y1, X2, y2)] for x; = x3 or xp = x3,
X — 81)

linpol [y, (x2, y2, X3, y3)]  for x; = x5 (or x| = x3).

4. Tangential Force Control Allocation Algorithm

The tangential force control allocation computes the actuations Cp rotsets €L set> ad Cp k a set> Such that a given value
for Fianset is reached (as closely as possible). Initially, all actuations are set to their optimal values resulting from a
steady-state drag power kite model (cf. e.g. [10]). Then the actuations are altered from their optimal value to reach the
Fianset demand in the following order: First Cp ror et is utilized until its bounds are reached. If necessary, second cr_ et is
reduced from its optimal value. If further necessary, third Cp x 4 set i increased above zero. That actuator utilization
provides the highest power extraction, and even results in reduced lift- and tether forces at high winds with potentially
high but less harmful gusts. The complete tangential force control allocation algorithm, which is executed at each

discrete time step, reads as follows:
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1. Initialization: Assign optimal actuations from a steady drag power kite model solution (cf. e.g. [10]), but limited

within their bounds, i.e.

- 1
CD,rot,set <« limit CD,rot,min, ECD,eq,ns CD,rot,max ) (82)
CLset < lirni'[(CL,min, CLn» CL,max)7 (83)
CD,k,a,set — lirnit(CD,k,a,rnin, 0, CD,k,a,max)- (84)

2. Compute the highest achievable tangential force,
Ftan,set,CDmmin — force(CD,rot,min, CLset> CD,k,a,set). (85)

Note that cp et and Cp x aset @lready have the values to support obtaining the highest achievable force.

3. If Ftan,set > Ftan,set,CD_ml_mm,

3.1. then
CD,rot,set — CD,rot,min~ (86)

A larger tangential force is not achievable, i.e. the tangential speed controller’s demand cannot be fully

satisfied, because the actuators are saturated. The algorithm ends here (return).

3.2. Otherwise, continue with next step.

4. Compute the lowest achievable tangential force by changing the rotor drag coefficient only,
Ftan,set,CD,mt,max — force(CD,rot,max, CL,set» CD,k,a,sct)~ 87)

5. If Ftan,set,CD_mI_max < Ftan,sets

5.1. it means that Fi,, ¢ is achievable just by changing the rotor drag coefficient. As from (21), (12), (10), (3),
and (78) follows Fian = co + ¢1Cp ot With some values cg and ¢y, the set value is found (exactly) by linear

interpolation between the two extrema,
CD,rot,set — liIlPOI [Ftan,setv (CD,rot,max’ Ftan,set,CD'mLmax, CD,rot,min’ Ftan,seLCD_ml,mm)] . (88)

The algorithm ends here (return).
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5.2. Otherwise, it means that Fiap e is not achievable by changing the rotor drag coefficient alone. It must be set

to the maximum

CD,rot,sel — CD,rot,max» (89)

but also further actuation(s) have to be altered.

6. Compute the lowest achievable tangential force by changing additionally the airfoil lift coefficient,

Ftan,seLcL,min — force(CD,rot,seta CL,min> CD,k,a,set)~ (90)

7' If Ftan,set,cL,min < Ftan,set’

7.1. it means that Fian ser is achievable just by changing additionally the airfoil lift coefficient. As from (25), (22),
(11), (28), (30), (27), (26), (24), (21), (12), (10), (3), and (78) follows Fiuy = co + cicL + cch with some
values cy, c1, and ¢, the set value is found (exactly) by quadratic interpolation. For that, three points are
required. A first point is the previously computed one at ¢ min. A second point is at ¢, = €L max, Whose

force is also already known from

Franset.crmac = Franset,Cp soumas - oD

A third point is computed in-between with

CL,min T CL,max

CLmid < 92)
2
by
Ftan,set,cL,mid — force(CD,rot,seta CL,mid» CD,k,a,set)' (93)
The airfoil lift coefficient set value is then
CLset < quadp01 [Ftan,seb (CL,min’ Ftan,set,chmm, CL,mid» Ftan,set,chmid, CL,max» Ftan,set,cL,max)] . 94)

There are two cr gt values from “quadpol”. The one is chosen which is within the interval [cr, min, €L max ]

(and possibly closer to ¢ max). The algorithm ends here (return).
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7.2. Otherwise, it means that Fiu, st is not achievable by changing only the rotor drag coefficient and the airfoil

lift coefficient. The latter must be set to the minimum

CL.set < CL,min» (95)

but also further actuation(s) have to be altered.

8. Compute the lowest achievable tangential force by changing additionally the actuated drag coefficient,

Ftan,set,C[)_k,a'max — force(CD,rot,set’ CL set» CD,k,a,max)- (96)

9. If Fanset, Cprouma < Flansets

9.1. it means that Fian set is achievable just by changing additionally the actuated drag coefficient. As from (24),
(21), (12), (10), (3), and (78) follows Fian = co + ¢1Cp k2 With some values ¢y and cy, the set value is found

(exactly) by linear interpolation between the two extrema,

Cbkaset < linpol [Ftan,seta (CD,k,a,mim Ean,set,CD,k,;.,mm, Cb k.a,max Ean,set,CD,k,ﬂ,,,,ax)] s 97)

where the force at Cp k amin is already known from

Ftan,set, Cpxamin — Ftan,set, CL,min * (98)

The algorithm ends here (return).

9.2. Otherwise, it means that Fi,; s is also not achievable with the highest actuated drag coefficient. It must be

set to the maximum

CD,k,a,set — CD,k,a,max- (99)

A lower tangential force is not achievable, i.e. the tangential speed controller’s demand cannot be fully

satisfied, because the actuators are saturated. The algorithm ends here (return).

IV. Implementation and Parameters

A. Simulation Execution
The model and control scheme are implemented as a MATLAB-function which computes the time derivatives of all

states. Those are then integrated using the forward Euler method. The simulation is stopped when the trajectory is
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settled, i.e. when the kite flew the maximum number of path loops. With appropriate initial values (particularly of kite
position, velocity, and powertrain temperature), the maximum number of path loops can be relatively low. From the last
path loop, the mean, minimum, and maximum of important values (e.g. power, force, speed) are computed, which may

then be used as a data point in a power curve plot.

B. Tether Spring-Damper Parameters

The tether spring-damper constants are not chosen based on e.g. material properties, because (i) it is hard to estimate
the actual values for the compound tether, (ii) a real tether has a mass and a sag and thus effectively has a higher
damping and lower spring constant as one would expect from the pure material properties, and (iii) if high spring and
damper constants are chosen, a low time step for the integration is required for numerical stability leading to a high

computational load. Instead the spring and damper constants are set based on the analysis in Appendix A.

C. Initial Position and Initial Velocity
Instead of specifying the initial position ry o and initial velocity vy ¢ directly, they are computed from initial azimuth
©o, initial elevation ¥y, and initial kite speed vy o by taking into account that the kite essentially can only move on the

sphere spanned by the tether:

vio = Ro(o + ow)Ry(90) (0,0, v 0) ", (100)

rio = R, (¢o + ‘pW)Ry(ﬂO) (L, 0, O)T + Fgs. (101)

D. Parameter Values to Simulate the Makani Wing 7

The derived model and control scheme are applied for the Makani Wing 7. The model parameters are taken
from [10, 41], from the results of a steady model similar to [10, 28, 29], and from estimations (e.g. actuator time
constants). Table 1 lists all relevant parameters. Note that a main goal of using the Makani Wing 7 parameters as

example is to validate the model against the power curve measurement from [10, Fig. 28.12].

Table 1 Parameters for simulations (Makani Wing 7).

Parameter Value Comment/Justification

Implementation parameters.
integration time = 0.01s good trade-off between accuracy and computational load

max. path loops =3 enough to (approximately) settle flight trajectory

Environmental parameters.
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g =9.81 m/s?

~ Standard Gravity; but actual value of [10] could differ slightly

o = 1.255kg/m3 standard atmosphere at 15 °C; but actual value of [10] could differ

Ayer =30m could be anything # 0 as no wind shear considered in [10] implying ag = 0

ay =0 no wind shear considered in [10]

Ve hes =0...12m/s considered values in [10, Fig. 28.12]

Ow =0 any value would be valid

T2 =0 ambient temperature is nominal ambient temperature

Kite parameters.

b =8m Ref. [10, Fig. 28.7]

A =3.96m Ref. [10, Fig. 28.7]

R =16.1616 = b*/A with b = 8 m from [10, Fig. 28.7]

cDo =0.010 Ref. [29]

cD2 = 0.005 Ref. [29]

CLn =2.2475 = CLa(1 + 2/ R) with C1,, = 2 from [10, Fig. 28.7]

CL,min-op =0.5 estimated

e =0.8 estimated, slightly higher than e ~ 0.7 for rectangular wings to account for
the winglets of Wing 7 [10, Fig. 28.7]; but actual value could differ

Cpko =0.025 = (Cox = Cokmwiln = (cpo + cpoct ) With (Cpx = Cp kmw,in = 0.06
from [10, Table 28.1], cf. (21)—(30)

Cb x.a.max =0.5 estimated

My =68kg estimated from 60 kg kite mass [41] plus half of the tether mass 16 kg [41]

Tether parameters.

Lie =144 m Ref. [41]

CDte =1 estimated, ~ c¢p of cylinder at reasonable Reynolds number

dre =1.1cm estimated based on data from [41] and a tether model similar to [8]

Arg =0.001 estimated (and is large enough for numerical stability)

D =1 estimated (critical damping)

24



Powertrain parameters.

Pyt =20kW
Pa_n = —20kW
T =30s

Ref. [10, Fig. 28.7]
same magnitude as P, 4,

estimated, typical time constant for electrical machine

Ground station parameters.

Fes = (0,0, 15m)

estimated from [10, Fig. 28.8], but has no effect on power curve as no wind

shear considered in [10]

Parameters of remaining actuators.

Va,min =30.5m/s Ref. [10, p. 487]

Van =37m/s estimated based on model results of a steady model similar to [28, 29]
Fn = 6.8kN results from magnitude of (11) with nominal values inserted
Ymax = —¥min =30° estimated

Ty o =0.2s estimated (for closed rotor speed control loop)

Te, = Tep,y, =0.1s estimated (for control surfaces)

T, =0.2s estimated (for closed roll control loop)

Controller parameters.

Jover-p =2 estimated feasible (and required)

SoverF =1 no force overloading (or underloading) considered

Jover-v =1 no speed overloading (or underloading) considered

D, =1 critical damping chosen

Dy, =1 critical damping chosen

Initial values.

%o =30°

o =-30°
Vk,0 = Van
CD,rot,O = CD,eq,n/2

for fast settling
for fast settling
for fast settling (note that vy =~ v,)

for most wind speeds close to the final value
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cLo =cCLn for most wind speeds close to the final value

Cbxap =0 for most wind speeds close to the final value
) =0 no roll at beginning
7 =1 for fast settling at high wind speeds; at low wind speeds, temperature likely

drops fast and power is not constrained by the temperature

V. Simulation Results and Model Validation with Measurements from the Makani Wing 7
In the following, simulation results with parameters of the Makani Wing 7 are reported and discussed in detail. The

results are also used to validate the derived model against the measurements reported in [10].

A. Power Curve Results

The most important question here is how the simulated power curve compares with that of the steady model [10, 28, 29]
and with measurements [10]. Figure 4 shows the results from this paper’s model with mean values over a flight path
loop plotted in solid, and the range of minimum and maximum values over a flight path loop plotted as area. Those
results are compared to a steady model similar to [10, 28, 29] plotted in dashed. The vertical dashed lines indicate the
different power curve regions, cf. [28, 29].

It can be seen that the majority of the mean values over a flight path loop match well with those of the steady model.

In particular, the most important one, the mean aerodynamic power, is almost identical to that of the steady model.

B. Power Curve: Steady Model vs. Point-Mass Model vs. Reality

Figure 5 shows an overlay of (i) [10, Fig. 28.12], which contains measured powers and simulation results of
Makani/Vander Lind, and (ii) Fig. 4 (row 1), with size, axes, and line thickness altered for better perception. It can be
seen that the resulting mean power of the model and controller of this paper is close to the other simulation results as
well as measurements conducted by Makani/Vander Lind. The slightly lower power of the model and controller of this
paper can be explained by (i) the non-zero mean azimuth angle assumed in the steady model (cf. [10]), while in fact the
recorded mean of the absolute values is =~ 10 °, see last row in Fig. 4, and by (ii) the non-optimized flight path e.g. with
Maximum Power Point (MPP) Tracking. In fact, slightly changing the flight path results almost exactly in the power
curve of Makani’s/Vander Lind’s results. It should be noted that an MPP-tracker might not only optimize the flight path,

but also the airflow speed set value or the rotor drag coefficient as function of the position within the trajectory.

C. Flight Trajectories over Wind Speeds

Figure 6 shows the flight trajectories at different wind speeds. The start and end points of all trajectories are almost
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Figure 4 Power curve simulation results.

identical, which indicates that the trajectory is settled, even-though the shown trajectories are just the third path loop (cf.

Table 1). Apart from the trajectory at vy, . = 12m/s, each one is almost a circle (clockwise) with the center point at

ref
about (¢, #) = (0°,-40°). However, the circle is not very smooth, which is caused by the switching behavior of the
target point tracking-based flight path controller. This indicates again space for optimizations.

The flight trajectory at vy, 5, = 12 m/s deviates rather significantly from others: When the kite flies downwards, the

ref
potential energy increases the airflow speed which is controlled and limited by the tangential speed controller and the
tangential force control allocation, which in turn reduces the airfoil lift coefficient, visible in Fig. 4. A reduced airfoil
lift coeflicient reduces the maximum centripetal force and therefore the instantaneous flight path turning radius becomes

larger. This effect is much weaker or non existent when the kite flies upwards. As a result of flying circles, here the

kite reaches dangerously low altitudes which should of course be targeted in improvements of the flight path controller.
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Figure 5 Comparison of power curves from different models and measurements.
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Figure 6 Flight trajectories at different wind speeds.

Alternatively, to circumvent too low altitudes, Makani proposes to use the vertical wings and sideslipping as additional

actuation to generate an additional centripetal force contribution, patented in [42].

D. Time Course of Important Values

To detail the proper working of the control method, the time course of important values are reviewed at vy, = 10m/s

ref

for the third flight path loop. Figure 7 gives the results.
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Figure 7 Time course of important values at 10 m/s wind speed with limited set values in dashed and actual
values in solid.

A path loop takes almost exactly 6s. The power oscillates significantly: When the kite flies downwards the nominal
power is exceeded (overloading) while the power is well below its nominal value when the kite flies upwards. The
airflow speed can be tracked, but with a visible control error, explainable by the tangential speed P-controller and its
critical dimensioning. However, with a more aggressive gain or a PI-controller, the tangential force control allocation
might reduce the airfoil lift and increase the actuated drag earlier and more often and thus may reduce the mean power.
This is obviously a trade-off between control accuracy and the dimensioning of the plant with enough overloading
capability or safety factors. Nevertheless, the important lift force hardly exceeds its nominal value, also visible in Fig. 4.
Thus, exceeded airflow speeds can be tolerated. The proper working of the tangential force control allocation is visible

in the last row of Fig. 7, showing a good match of the set values and actual values. The kite’s roll angle is almost all the
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time at its maximum positive value. Due to gravity, it also has to be reduced for some time to regain altitude. Here, the

switching behavior of the flight path controller is visible and affects most other values, cf. e.g. Fig. 7 at t — feng ® —5's.

E. Dynamic Change of Wind Speed
To further demonstrate the proper working of the control scheme, it is challenged with a wind speed step change from

Vi = 10m/s to vy 5, = 6 m/s after the first path loop (i.e. when the kite flies upward). Note that such a stepwise

"
change is unlikely in reality, but constitutes an excellent challenge for the control scheme. If the control scheme is
successful in suppressing such a disturbance, it will less likely have problems in realistic wind conditions. Figure 8 (left)
reports the results.

As expected, the rotor drag is reduced and so are the power and airflow speed. For a short time betweent = 8...10s

the rotors are used as propellers in motor mode. The new set values are reached within less than a second. The step

change is even hardly visible in the tangential force values, cf. last row in Fig. 8 (left).

F. Dynamic Change of Powertrain Temperature Set Value
As one further challenge for the control scheme, the per unit set temperature of the powertrain is changed stepwise

7
from 7,

= 1.0 to 7/, = 0.8 after the first path loop. Note again that such a stepwise change of 7

<t is unrealistic or has
no practical meaning, but constitutes another excellent challenge for the controller. Figure 8 (right) reports the results.

The limitation controller brings the power down to zero almost immediately after the step change of 7, for about 65
to cool down the powertrain quickly. The now missing tangential force actuated with Cp o is simply substituted by
Cb x.a, automatically by the proposed control allocation. The rather long time in which the power is zero is hardly visible
in the tangential force [last row of Fig. 8 (right)] or in the airflow speed [third row of Fig. 8 (right)]. This indicates that

the tangential force control allocation works as expected.

G. Results for Figure Eight Flight Paths

The Makani systems are flown in circles. To not twist the tether while allowing an infinite number of circle loops,
a rather complex gimbal system and slip rings are required for the ground station tether connection. To avoid that
complexity (which is additionally in part patented by Makani and thus usage might be restricted), figure eight paths are
also tested. This allows yet another test for the proposed control scheme, namely to control the kite for different flight
paths. Figure 9 shows the kite’s trajectory for an inside-down and inside-up figure eight.

The control scheme stabilizes the kite’s trajectory well. However, the inside-up figure eight looks quite distorted.
This can be explained by the not-insignificant gravitational force which acts as centrifugal force for a longer time of the

turns than it acts as centripetal force. Moreover, when the kite flies downwards, again the lift coefficient is reduced
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Figure 9 Inside-down (left) and inside-up (right) figure eight trajectories at 10 m/s wind speed with the Kite’s
orientation every 1 s before the path loop ends.

which additionally reduces the maximum actuatable centripetal force. Both is exactly opposite for the inside-down

figure eight path, which is an almost perfect eight.

VI. Conclusions

This paper proposes a control scheme to control a drag power kite over the entire wind speed range. The complete
control scheme is based on conventional P-controllers and parts to allocate actuations as well as to invert nonlinearities,
i.e. control allocations. The control scheme includes a temperature controller and the possibility to overload the
powertrain temporarily. Satisfying temperature-, power-, force-, speed-, and actuator constraints are an integral part.
Another key part of the control scheme is the proposed tangential force control allocation. Simulation results indicate
the proper working of the control scheme. Moreover, the recorded power curve matches well with steady models from
both the authors and Makani as well as with the measurements recorded by Makani. The temporary overloading of the
powertrain with about twice the nominal power can be concluded as a requirement, otherwise the mean power would be
significantly lower. An overloading or underloading of the forces and speeds are not required. Due to the reduction of
the lift coefficient and thus reduction of the maximum centripetal force at high wind speeds, one can conclude that the
inside-down figure eight flight path is the best alternative compared to other patterns.

It must be highlighted, that (i) all controllers are only P-controllers, (ii) the flight path controller is based on simple
target point switching, and (iii) there is no MPP-Tracking or other means of real time optimization considered (apart
from using the optimal solution of the airflow speed from a steady model as airflow speed set value).—Yet, the control
scheme stabilizes the kite well, a good or the expected amount of power is generated, the limits are satisfied, and thus
the control problem is solved well. This is because the P-controllers are applied for control-oriented plant submodels
and the nonlinear parts are canceled out (or linearized) by control allocations. Therefore, the control scheme has a

rather low complexity and is rather cheap in terms of computational costs.
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Nevertheless, steady-state errors cannot be excluded with P-controllers, particularly also in a real system in which
the dynamics, parameters, and states are not exactly available. PI-controllers may improve the control performance, but
do also require anti-wind-up, which increases complexity. Optimizations to the control scheme should be targeted in
future research. Moreover, the simple models for actuators and aerodynamics should be replaced by more sophisticated

ones and finally the control scheme should be tested on a real drag power kite plant for further validation.

Appendix

A. Derivation of Useful Tether Spring-Damper Parameters

The kite’s (or point-mass’s) dynamics into the radial (or tether) direction is given by

M r = Facer + Finerrs (102)

where Fiper denotes inertial forces into the e,-direction (initial conditions are dropped for sake of brevity).
Substituting (5) into (9) under the conditions Are > 0 and Fie sg > 0, substituting that further into (3) and dot-multiply

with e;, gives the acceleration force in the radial direction

Facc,r = Fg,r + Fa,r = Gedre + e Mie, (103)

where Fy; and F, are the gravitational and aerodynamic forces in the e.-direction. Substituting that into (102) gives

Myiicr = Fg,r + Far — Stedrie + Eedvie + Fineryr- (104)
As by definition
d . d d? .

Avee = aArte =Tk EAVte = @Arte =Tk (105)

Eq. (104) becomes

d? d
maﬁﬁl’te = —Gredrie — é:teadrte + Fyr + Far + Finerr, (106)
—— ——
=:Fuistr

in which Fyi r is summarized as disturbance or excitation term/force. Eq. (106) solved for Ar. reads in the Laplace-domain

1

St
Are = - ; Fdist,r- (107)
Tag2 ysegy]
Ste Ste
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Comparing the denominator with that of a second order delay (47), the time constant 73 = Ti. and damping Dy = D

are defined by
T2="2 (108)
Ste
2DeTre = %- (109)
Ste

Moreover, the elongation Ar. /L at steady-state s = 0 and in per unit is given by

1

<o A
Arle(s = 0) = LFdist,r | DL S Ar] &

L Fdist,r

te,0
M2 4 S 4 ] ¢ Le
Ste Ste

§telﬂe’

(s=0)= (110)
where Ar;, o8 the per unit steady-state elongation.

Usually, a good estimate tends to be available for the per unit elongation at the nominal forces Ary, , (which is rather
low) and for the damping D¢, (which is about the critical value one). With the simplified nominal force in the tether

direction Fisir = F1n in (110), the spring constant is

A = S G = ———, (111)
en SteLie “ Arte,nLle
and the damper constant is given by squaring (109), substituting (108) and (111), and rearranging
maF1.n
=2D — . 112
&re “\ Arl, Lo (112)
The time constant (108) then becomes
maAry, L
Te = | — 2, (113)
FL,n

which is a measure for the upper limit for the time step of the numerical integration of the system of nonlinear ordinary

differential equations to avoid numerical instability.
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